792 research outputs found

    Interaction Between The Broad-lined Type Ic Supernova 2012ap and Carriers of Diffuse Interstellar Bands

    Get PDF
    The diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond with electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad-lined Type Ic supernova SN 2012ap that exhibit changes in equivalent width over short (~30 days) timescales. The 4428 and 6283 Angstrom DIB features get weaker with time, whereas the 5780 Angstrom feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of the DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers.Comment: 6 pages, 3 figures, accepted for publication in ApJ

    Zooming In on the Progenitors of Superluminous Supernovae With the HST

    Full text link
    We present Hubble Space Telescope (HST) rest-frame ultraviolet imaging of the host galaxies of 16 hydrogen-poor superluminous supernovae (SLSNe), including 11 events from the Pan-STARRS Medium Deep Survey. Taking advantage of the superb angular resolution of HST, we characterize the galaxies' morphological properties, sizes and star formation rate (SFR) densities. We determine the supernova (SN) locations within the host galaxies through precise astrometric matching, and measure physical and host-normalized offsets, as well as the SN positions within the cumulative distribution of UV light pixel brightness. We find that the host galaxies of H-poor SLSNe are irregular, compact dwarf galaxies, with a median half-light radius of just 0.9 kpc. The UV-derived SFR densities are high ( ~ 0.1 M_sun/yr/kpc^2), suggesting that SLSNe form in overdense environments. Their locations trace the UV light of their host galaxies, with a distribution intermediate between that of long-duration gamma-ray bursts (LGRBs) (which are strongly clustered on the brightest regions of their hosts) and a uniform distribution (characteristic of normal core-collapse SNe), though cannot be statistically distinguished from either with the current sample size. Taken together, this strengthens the picture that SLSN progenitors require different conditions than those of ordinary core-collapse SNe to form, and that they explode in broadly similar galaxies as do LGRBs. If the tendency for SLSNe to be less clustered on the brightest regions than are LGRBs is confirmed by a larger sample, this would indicate a different, potentially lower-mass progenitor for SLSNe than LRGBs.Comment: ApJ in press; matches published version. Minor changes following referee's comments; conclusions unchange

    Hydrogen-Poor Superluminous Supernovae and Long-Duration Gamma-Ray Bursts Have Similar Host Galaxies

    Get PDF
    We present optical spectroscopy and optical/near-IR photometry of 31 host galaxies of hydrogen-poor superluminous supernovae (SLSNe), including 15 events from the Pan-STARRS1 Medium Deep Survey. Our sample spans the redshift range 0.1 < z < 1.6 and is the first comprehensive host galaxy study of this specific subclass of cosmic explosions. Combining the multi-band photometry and emission-line measurements, we determine the luminosities, stellar masses, star formation rates and metallicities. We find that as a whole, the hosts of SLSNe are a low-luminosity ( ~ -17.3 mag), low stellar mass ( ~ 2 x 10^8 M_sun) population, with a high median specific star formation rate ( ~ 2 Gyr^-1). The median metallicity of our spectroscopic sample is low, 12 + log(O/H}) ~ 8.35 ~ 0.45 Z_sun, although at least one host galaxy has solar metallicity. The host galaxies of H-poor SLSNe are statistically distinct from the hosts of GOODS core-collapse SNe (which cover a similar redshift range), but resemble the host galaxies of long-duration gamma-ray bursts (LGRBs) in terms of stellar mass, SFR, sSFR and metallicity. This result indicates that the environmental causes leading to massive stars forming either SLSNe or LGRBs are similar, and in particular that SLSNe are more effectively formed in low metallicity environments. We speculate that the key ingredient is large core angular momentum, leading to a rapidly-spinning magnetar in SLSNe and an accreting black hole in LGRBs.Comment: ApJ in press; updated to match accepted version. Some additional data added, discussion of selection effects expanded; conclusions unchanged. 22 pages in emulateapj forma

    Ultra-Luminous Supernovae as a New Probe of the Interstellar Medium in Distant Galaxies

    Full text link
    We present the Pan-STARRS1 discovery and light curves, and follow-up MMT and Gemini spectroscopy of an ultra-luminous supernova (ULSN; dubbed PS1-11bam) at a redshift of z=1.566 with a peak brightness of M_UV=-22.3 mag. PS1-11bam is one of the highest redshift spectroscopically-confirmed SNe known to date. The spectrum is characterized by broad absorption features typical of previous ULSNe (e.g., CII, SiIII), and by strong and narrow MgII and FeII absorption lines from the interstellar medium (ISM) of the host galaxy, confirmed by an [OII]3727 emission line at the same redshift. The equivalent widths of the FeII2600 and MgII2803 lines are in the top quartile of the quasar intervening absorption system distribution, but are weaker than those of gamma-ray burst intrinsic absorbers (i.e., GRB host galaxies). We also detect the host galaxy in pre-explosion Pan-STARRS1 data and find that its UV spectral energy distribution is best fit with a young stellar population age of tau~15-45 Myr and a stellar mass of M \sim (1.1-2.6)x10^9 M_sun (for Z=0.05-1 Z_sun). The star formation rate inferred from the UV continuum and [OII]3727 emission line is ~10 M_sun/yr, higher than in any previous ULSN host. PS1-11bam provides the first direct demonstration that ULSNe can serve as probes of the interstellar medium in distant galaxies. At the present, the depth and red sensitivity of PS1 are uniquely suited to finding such events at cosmologically interesting redshifts (z~1-2); the future combination of LSST and 30-m class telescopes promises to extend this technique to z~4.Comment: Submitted to ApJL; 9 pages; 4 figures; 1 tabl

    PS1-10afx at z=1.388: Pan-STARRS1 Discovery of a New Type of Superluminous Supernova

    Full text link
    We present the Pan-STARRS1 discovery of PS1-10afx, a unique hydrogen-deficient superluminous supernova (SLSN) at z=1.388. The light curve peaked at z_P1=21.7 mag, making PS1-10afx comparable to the most luminous known SNe, with M_u = -22.3 mag. Our extensive optical and NIR observations indicate that the bolometric light curve of PS1-10afx rose on the unusually fast timescale of ~12 d to the extraordinary peak luminosity of 4.1e44 erg/s (M_bol = -22.8 mag) and subsequently faded rapidly. Equally important, the SED is unusually red for a SLSN, with a color temperature of 6800 K near maximum light, in contrast to previous H-poor SLSNe, which are bright in the UV. The spectra more closely resemble those of a normal SN Ic than any known SLSN, with a photospheric velocity of 11,000 km/s and evidence for line blanketing in the rest-frame UV. Despite the fast rise, these parameters imply a very large emitting radius (>5e15 cm). We demonstrate that no existing theoretical model can satisfactorily explain this combination of properties: (i) a nickel-powered light curve cannot match the combination of high peak luminosity with the fast timescale; (ii) models powered by the spindown energy of a rapidly-rotating magnetar predict significantly hotter and faster ejecta; and (iii) models invoking shock breakout through a dense circumstellar medium cannot explain the observed spectra or color evolution. The host galaxy is well detected in pre-explosion imaging with a luminosity near L*, a star formation rate of 15 M_sun/yr, and is fairly massive (2e10 M_sun), with a stellar population age of 1e8 yr, also in contrast to the dwarf hosts of known H-poor SLSNe. PS1-10afx is distinct from known examples of SLSNe in its spectra, colors, light-curve shape, and host galaxy properties, suggesting that it resulted from a different channel than other hydrogen-poor SLSNe.Comment: 17 pages, 12 figures, accepted to ApJ, minor revisions, including expanded discussion of lensing hypothesi

    Cosmological Constraints from Measurements of Type Ia Supernovae discovered during the first 1.5 years of the Pan-STARRS1 Survey

    Get PDF
    We present griz light curves of 146 spectroscopically confirmed Type Ia Supernovae (0.03<z<0.650.03 < z <0.65) discovered during the first 1.5 years of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2\% without accounting for the uncertainty in the HST Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only SNe and assuming a constant dark energy equation of state and flatness, yields w=1.1200.206+0.360(Stat)0.291+0.269(Sys)w=-1.120^{+0.360}_{-0.206}\textrm{(Stat)} ^{+0.269}_{-0.291}\textrm{(Sys)}. When combined with BAO+CMB(Planck)+H0H_0, the analysis yields ΩM=0.2800.012+0.013\Omega_{\rm M}=0.280^{+0.013}_{-0.012} and w=1.1660.069+0.072w=-1.166^{+0.072}_{-0.069} including all identified systematics (see also Scolnic et al. 2014). The value of ww is inconsistent with the cosmological constant value of 1-1 at the 2.3σ\sigma level. Tension endures after removing either the BAO or the H0H_0 constraint, though it is strongest when including the H0H_0 constraint. If we include WMAP9 CMB constraints instead of those from Planck, we find w=1.1240.065+0.083w=-1.124^{+0.083}_{-0.065}, which diminishes the discord to <2σ<2\sigma. We cannot conclude whether the tension with flat Λ\LambdaCDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 supernova sample with  ⁣ ⁣\sim\!\!3 times as many SNe should provide more conclusive results.Comment: 38 pages, 16 figures, 14 tables, ApJ in pres

    Systematic Uncertainties Associated with the Cosmological Analysis of the First Pan-STARRS1 Type Ia Supernova Sample

    Get PDF
    We probe the systematic uncertainties from 113 Type Ia supernovae (SNIa) in the Pan-STARRS1 (PS1) sample along with 197 SN Ia from a combination of low-redshift surveys. The companion paper by Rest et al. (2013) describes the photometric measurements and cosmological inferences from the PS1 sample. The largest systematic uncertainty stems from the photometric calibration of the PS1 and low-z samples. We increase the sample of observed Calspec standards from 7 to 10 used to define the PS1 calibration system. The PS1 and SDSS-II calibration systems are compared and discrepancies up to ~0.02 mag are recovered. We find uncertainties in the proper way to treat intrinsic colors and reddening produce differences in the recovered value of w up to 3%. We estimate masses of host galaxies of PS1 supernovae and detect an insignificant difference in distance residuals of the full sample of 0.037\pm0.031 mag for host galaxies with high and low masses. Assuming flatness in our analysis of only SNe measurements, we find w=1.1200.206+0.360(Stat)0.291+0.269(Sys)w = {-1.120^{+0.360}_{-0.206}\textrm{(Stat)} ^{+0.269}_{-0.291}\textrm{(Sys)}}. With additional constraints from BAO, CMB(Planck) and H0 measurements, we find w=1.1660.069+0.072w = -1.166^{+0.072}_{-0.069} and ΩM=0.2800.012+0.013\Omega_M=0.280^{+0.013}_{-0.012} (statistical and systematic errors added in quadrature). Significance of the inconsistency with w=1w=-1 depends on whether we use Planck or WMAP measurements of the CMB: wBAO+H0+SN+WMAP=1.1240.065+0.083w_{\textrm{BAO+H0+SN+WMAP}}=-1.124^{+0.083}_{-0.065}.Comment: 24 pages, 20 figures. Accepted by Ap

    Telomeric expression sites are highly conserved in trypanosoma brucei

    Get PDF
    Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology
    corecore