3,920 research outputs found

    Tracking Optical and Electronic Behaviour of Quantum Contacts in Sub-Nanometre Plasmonic Cavities.

    Get PDF
    Plasmonic interactions between two metallic tips are dynamically studied in a supercontinuum dark-field microscope and the transition between coupled and charge-transfer plasmons is directly observed in the sub-nm regime. Simultaneous measurement of the dc current, applied force, and optical scattering as the tips come together is used to determine the effects of conductive pathways within the plasmonic nano-gap. Critical conductances are experimentally identified for the first time, determining the points at which quantum tunnelling and conductive charge transport begin to influence plasmon coupling. These results advance our understanding of the relationship between conduction and plasmonics, and the fundamental quantum mechanical behaviours of plasmonic coupling.The authors would like to acknowledge Nanotools GmbH for their contributions and support to this project. We acknowledge EPSRC Grants No. EP/G060649/1, No. EP/L027151/1, and No. EP/K028510/1, ERC Grant No. LINASS 320503, and Ikerbasque. RWB thanks Queens’ College, Cambridge and the Royal Commission for the Exhibition of 1851 for financial support.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/srep3298

    Bounding quantum gate error rate based on reported average fidelity

    Full text link
    Remarkable experimental advances in quantum computing are exemplified by recent announcements of impressive average gate fidelities exceeding 99.9% for single-qubit gates and 99% for two-qubit gates. Although these high numbers engender optimism that fault-tolerant quantum computing is within reach, the connection of average gate fidelity with fault-tolerance requirements is not direct. Here we use reported average gate fidelity to determine an upper bound on the quantum-gate error rate, which is the appropriate metric for assessing progress towards fault-tolerant quantum computation, and we demonstrate that this bound is asymptotically tight for general noise. Although this bound is unlikely to be saturated by experimental noise, we demonstrate using explicit examples that the bound indicates a realistic deviation between the true error rate and the reported average fidelity. We introduce the Pauli distance as a measure of this deviation, and we show that knowledge of the Pauli distance enables tighter estimates of the error rate of quantum gates

    Immunological survey of babesiosis ( Babesia peircei ) and toxoplasmosis in Jackass penguins in South Africa

    Get PDF
    Babesia peircei a été extrait d'érythrocytes nucléés provenant de Sphenicus demersus originaires d'Afrique du Sud infectés naturellement. Des fractions de Babesia peircei enrichies en glycoprotéines ont été obtenues par chromatographie sur colonne d'affinité concanavaline A-Sepharose et séparées par électrophorèse en gel de polyacrylamide-dodecylsulfate de sodium (SDS.PAGE). Quatorze bandes protéiques au minimum ont été observées (9, 11, 13, 20, 22, 23, 24, 43, 62, 90, 120, 204, et 205 kDa), la protéine majeure étant de 25 kDa. Des prélèvements sanguins provenant de 191 S. demersus adultes ont été testés par ELISA en utilisant les fractions de B. peircei enrichies en glycoprotéines pour détecter les IgG dirigées contre B. peircei. les prélèvements provenaient de trois groupes de manchots sauvages (n = 110), d'un groupe de manchots (n = 66) ayant été secourus après avoir été contaminés par une marée noire en mer et soignés à la Fondation Nationale Sud Africaine pour la Conservation des Oiseaux littoraux (SANCCOB), et d'un dernier groupe issu des manchots pensionnaires du SANCCOB (n = 15). La prévalence globale pour B. peircei était de 65 %, et la séropositivité moyenne s'échelonnait de 60 à 71 % parmi les cinq groupes de manchots. L'ELISA apparaissait spécifique pour les IgG dirigées contre B. peircei lorsque testée pour les IgG contre Haemoproteus columbae et les IgG contre le paludisme aviaire (Plasmodium relictum, et P. elongatum(, Les anticorps (Ac) dirigés contre Toxoplasma gondii ont été détectés par le test d'agglutination directe utilisant des tachyzoites de T. gondii tués. Tous les oiseaux étaient séronégatifs pour les Ac dirigés contre T. gondii. L'absence de manchots positifs pour T. gondii était due aux conditions sanitaires appropriées et aux méthodes de prévention contre T. gondii utilisées par le SANCCOB

    Understanding the plasmonics of nanostructured atomic force microscopy tips

    Get PDF
    Structured metallic tips are increasingly important for optical spectroscopies such as tip-enhanced Raman spectroscopy, with plasmonic resonances frequently cited as a mechanism for electric field enhancement. We probe the local optical response of sharp and spherical-tipped atomic force microscopy (AFM) tips using a scanning hyperspectral imaging technique to identify the plasmonic behaviour. Localised surface plasmon resonances which radiatively couple with far-field light are found only for spherical AFM tips, with little response for sharp AFM tips, in agreement with numerical simulations of the near-field response. The precise tip geometry is thus crucial for plasmon-enhanced spectroscopies, and the typical sharp cones are not preferred.The authors thank EPSRC Grant Nos. EP/G060649/1, EP/K028510/1, and EP/L027151/1, and ERC Grant No. LINASS 320503 for funding and NanoTools for their services providing Au-coated spherical AFM tips. R.W.B. thanks Queens' College and the Royal Commission for the Exhibition of 1851 for financial support

    Super-resolving phase measurements with a multi-photon entangled state

    Full text link
    Using a linear optical elements and post-selection, we construct an entangled polarization state of three photons in the same spatial mode. This state is analogous to a ``photon-number path entangled state'' and can be used for super-resolving interferometry. Measuring a birefringent phase shift, we demonstrate two- and three-fold improvements in phase resolution.Comment: 4 pages, 3 figure

    Drug-resistant genotypes and multi-clonality in Plasmodium falciparum analysed by direct genome sequencing from peripheral blood of malaria patients.

    Get PDF
    Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity

    Oklahoma forage and pasture fertility guide

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    A novel malaria vaccine candidate antigen expressed in Tetrahymena thermophila

    Get PDF
    Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens

    FindFoci: a focus detection algorithm with automated parameter training that closely matches human assignments, reduces human inconsistencies and increases speed of analysis

    Get PDF
    Accurate and reproducible quantification of the accumulation of proteins into foci in cells is essential for data interpretation and for biological inferences. To improve reproducibility, much emphasis has been placed on the preparation of samples, but less attention has been given to reporting and standardizing the quantification of foci. The current standard to quantitate foci in open-source software is to manually determine a range of parameters based on the outcome of one or a few representative images and then apply the parameter combination to the analysis of a larger dataset. Here, we demonstrate the power and utility of using machine learning to train a new algorithm (FindFoci) to determine optimal parameters. FindFoci closely matches human assignments and allows rapid automated exploration of parameter space. Thus, individuals can train the algorithm to mirror their own assignments and then automate focus counting using the same parameters across a large number of images. Using the training algorithm to match human assignments of foci, we demonstrate that applying an optimal parameter combination from a single image is not broadly applicable to analysis of other images scored by the same experimenter or by other experimenters. Our analysis thus reveals wide variation in human assignment of foci and their quantification. To overcome this, we developed training on multiple images, which reduces the inconsistency of using a single or a few images to set parameters for focus detection. FindFoci is provided as an open-source plugin for ImageJ
    • …
    corecore