12,744 research outputs found

    Collective versus hub activation of epidemic phases on networks

    Full text link
    We consider a general criterion to discern the nature of the threshold in epidemic models on scale-free (SF) networks. Comparing the epidemic lifespan of the nodes with largest degrees with the infection time between them, we propose a general dual scenario, in which the epidemic transition is either ruled by a hub activation process, leading to a null threshold in the thermodynamic limit, or given by a collective activation process, corresponding to a standard phase transition with a finite threshold. We validate the proposed criterion applying it to different epidemic models, with waning immunity or heterogeneous infection rates in both synthetic and real SF networks. In particular, a waning immunity, irrespective of its strength, leads to collective activation with finite threshold in scale-free networks with large exponent, at odds with canonical theoretical approaches.Comment: Revised version accepted for publication in PR

    Phase transitions with infinitely many absorbing states in complex networks

    Get PDF
    We instigate the properties of the threshold contact process (TCP), a process showing an absorbing-state phase transition with infinitely many absorbing states, on random complex networks. The finite size scaling exponents characterizing the transition are obtained in a heterogeneous mean field (HMF) approximation and compared with extensive simulations, particularly in the case of heterogeneous scale-free networks. We observe that the TCP exhibits the same critical properties as the contact process (CP), which undergoes an absorbing-state phase transition to a single absorbing state. The accordance among the critical exponents of different models and networks leads to conjecture that the critical behavior of the contact process in a HMF theory is a universal feature of absorbing state phase transitions in complex networks, depending only on the locality of the interactions and independent of the number of absorbing states. The conditions for the applicability of the conjecture are discussed considering a parallel with the susceptible-infected-susceptible epidemic spreading model, which in fact belongs to a different universality class in complex networks.Comment: 9 pages, 6 figures to appear in Phys Rev

    Near-Infrared Kinetic Spectroscopy of the HO_2 and C_2H_5O_2 Self-Reactions and Cross Reactions

    Get PDF
    The self-reactions and cross reactions of the peroxy radicals HO_2 and C_2H_5O_2 and HO_2 were monitored using simultaneous independent spectroscopic probes to observe each radical species. Wavelength modulation (WM) near-infrared (NIR) spectroscopy was used to detect HO_2, and UV absorption monitored HO_2 and C_2H_5O_2. The temperature dependences of these reactions were investigated over a range of interest to tropospheric chemistry, 221−296 K. The Arrhenius expression determined for the cross reaction, k_2(T) = (6.01^(+1.95)_(−1.47)) × 10^(−13) exp((638 ± 73)/T) cm^3 molecules^(−1) s^(−1) is in agreement with other work from the literature. The measurements of the HO_2 self-reaction agreed with previous work from this lab and were not further refined.(1) The C_2H_5O_2 self-reaction is complicated by secondary production of HO_2. This experiment performed the first direct measurement of the self-reaction rate constant, as well as the branching fraction to the radical channel, in part by measurement of the secondary HO_2. The Arrhenius expression for the self-reaction rate constant is k_3(T) = (1.29^(+0.34)_(−0.27)) × 10^(−13)exp((−23 ± 61)/T) cm^3 molecules^(−1) s^(−1), and the branching fraction value is α = 0.28 ± 0.06, independent of temperature. These values are in disagreement with previous measurements based on end product studies of the branching fraction. The results suggest that better characterization of the products from RO_2 self-reactions are required

    Diamond thin Film Detectors for Beam Monitoring Devices

    Full text link
    Diamonds offer radiation hard sensors, which can be used directly in primary beams. Here we report on the use of a polycrystalline CVD diamond strip sensor as beam monitor of heavy ion beams with up to 2.10^9 lead ions per bunch. The strips allow for a determination of the transverse beam profile to a fraction of the pitch of the strips, while the timing information yields the longitudinal bunch length with a resolution of the order of a few mm.Comment: 6 pages, 7 figures, to appear in the Proceedings of the Hasselt Diamond Workshop (Hasselt, Belgium, Feb. 2006), v4: accidentally submitted figure, appearing at end, remove

    Swine zoonosis risk assessment with new herd seroprofiling assays from QIAGEN

    Get PDF
    QIAGEN Leipzig developed the pigtype product line of ELISA tests for screening for swine zoonoses. This product line now includes ELISA for detection of salmonella-, Yersinia-, Trichinella-, and Toxoplasma-antibodies in swine. These pigtype assays are validated for serum and meat juice samples and are officially approved by the German Friedrich-Loeffler-Institut

    The interface for functions in the dune-functions module

    Get PDF
    The dune-functions dune module introduces a new programmer interface for discrete and non-discrete functions. Unlike the previous interfaces considered in the existing dune modules, it is based on overloading operator(), and returning values by-value. This makes user code much more readable, and allows the incorporation of newer C++ features such as lambda expressions. Run-time polymorphism is implemented not by inheritance, but by type erasure, generalizing the ideas of the std::function class from the C++11 standard library. We describe the new interface, show its possibilities, and measure the performance impact of type erasure and return-by-value

    Function space bases in the dune-functions module

    Get PDF
    The dune-functions Dune module provides interfaces for functions and function space bases. It forms one abstraction level above grids, shape functions, and linear algebra, and provides infrastructure for full discretization frameworks like dune-pdelab and dune-fem. This document describes the function space bases provided by dune-functions. These are based on an abstract description of bases for product spaces as trees of simpler bases. From this description, many different numberings of degrees of freedom by multi-indices can be derived in a natural way. We describe the abstract concepts, document the programmer interface, and give a complete example program that solves the stationary Stokes equation using Taylor-Hood elements
    • …
    corecore