
Function space bases in the
dune-functions module

Christian Engwer1, Carsten Gräser2, Steffen Müthing3, and
Oliver Sander4

1Universität Münster, Institute for Computational und Applied Mathematics,
christian.engwer@uni-muenster.de

2Freie Universität Berlin, Institut für Mathematik, graeser@mi.fu-berlin.de
3Universität Heidelberg, Institut für Wissenschaftliches Rechnen,

steffen.muething@iwr.uni-heidelberg.de
4TU Dresden, Institute for Numerical Mathematics, oliver.sander@tu-dresden.de

June 26, 2018

This work is licensed under a
Creative Commons Attribution-NoDerivatives 4.0 International License.

The full license text is available here:
https://creativecommons.org/licenses/by-nd/4.0/legalcode

The dune-functionsDune module provides interfaces for functions and
function space bases. It forms one abstraction level above grids, shape func-
tions, and linear algebra, and provides infrastructure for full discretization
frameworks like dune-pdelab and dune-fem. This document describes the
function space bases provided by dune-functions. These are based on an
abstract description of bases for product spaces as trees of simpler bases.
From this description, many different numberings of degrees of freedom by
multi-indices can be derived in a natural way. We describe the abstract
concepts, document the programmer interface, and give a complete exam-
ple program that solves the stationary Stokes equation using Taylor–Hood
elements.

1

ar
X

iv
:1

80
6.

09
54

5v
1

 [
cs

.M
S]

 2
5

Ju
n

20
18

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository: Freie Universität Berlin (FU), Math Department (fu_mi_publications)

https://core.ac.uk/display/267951921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://creativecommons.org/licenses/by-nd/4.0/legalcode

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

Introduction

The core modules of the Dune software system focus on low-level infrastructure for
implementations of simulation algorithms for partial differential equations. Modules
like dune-grid and dune-istl provide programmer interfaces (APIs) to finite element
grids and sparse linear algebra, respectively, but little more. Actual finite element
functions only appear in the dune-localfunctions module, which deals with discrete
function spaces on single grid elements exclusively.

On top of these core modules, various other modules in the Dune ecosystem imple-
ment finite element and finite volume assemblers and solvers, and the corresponding
discrete function spaces. The most prominent ones are dune-pdelab1 and dune-fem,2

but smaller ones like dune-fufem3 exist as well. The functionality of these modules
overlaps to a considerable extent, even though each such module has a different focus.

The dune-functions module was written to partially overcome this fragmentation,
and to unify parts of the competing implementations. It picks a well-defined aspect of
finite element assembly—finite element spaces and functions—and, in the Dune spirit,
provides abstract interfaces that try to be both extremely flexibly and efficient. The
hope is that other implementations of the same functionality eventually replace their
implementations by a dependence on dune-functions. Indeed, at the time of writing
at least dune-pdelab and dune-fufem are in the process of migrating, and have stated
their clear intention to complete this migration eventually.

Of the two parts of dune-functions functionality, the APIs for discrete and closed-
form functions have already been described in a separate paper [6]. The present
document focuses on spaces of discrete functions. However, the central concept is not
the function space itself, but rather the basis of the function space. This is because
even though finite element spaces play a central role in theoretical considerations of the
finite element method, actual computations use coefficient vectors, which are defined
with respect to particular bases. Also, for various finite element spaces, more than
one basis is used in practice. For example, the space of second-order Lagrangian finite
elements is used both with the nodal (Lagrange) basis [3], and with the hierarchical
basis [1]. Discontinuous Galerkin spaces can be described in terms of Lagrange bases,
monomial bases, Legendre bases, and more [7]. It is therefore important to be able to
distinguish these different representations of the same space in the application code.
For these reasons, the main dune-functions interface represents a basis of a discrete
function space, and not the space itself.

Finite element function space bases frequently exhibit a fair amount of structure. In
particular, vector-valued and mixed finite element spaces can be written as products
of simpler spaces. Even more, such spaces have a natural structure as a tree, with
scalar-valued or otherwise irreducible spaces forming the leaves, and products forming
the inner nodes. The dune-functions module allows to systematically construct new
bases by multiplication of existing bases. The resulting tree structure is reproduced as
type information in the code. This tree construction of finite element spaces has first

1https://dune-project.org/modules/dune-pdelab
2https://dune-project.org/modules/dune-fem
3https://dune-project.org/modules/dune-fufem

2

https://dune-project.org/modules/dune-pdelab
https://dune-project.org/modules/dune-fem
https://dune-project.org/modules/dune-fufem

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

been systematically worked out in [11].
For the basis functions in such a non-trivial tree structure, there is no single canonical

way to index them. Keeping all degrees of freedom in a single standard array would
require indexing by a contiguous, zero-starting set of natural numbers. On the other
hand, from the tree structure of the basis follows a natural indexing by multi-indices,
which can be used to address nested vector and matrix data types, like the ones
provided by dune-istl. Closer inspection reveals that these two possibilities are just
two extreme cases of a wider scale of indexing rules. The dune-functions module
therefore provides a systematic way to construct such rules. While some of them are
somewhat contrived, many others really are useful in applications.

This document describes Version 2.6 of the dune-functions module. The mod-
ule is hosted on the Dune project homepage www.dune-project.org. Installation
instructions and an up-to-date class documentation can be found there.

3

www.dune-project.org

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

Contents

1 Function space bases 4
1.1 Trees of function spaces . 5
1.2 Trees of function space bases . 6
1.3 Indexing basis functions by multi-indices 7
1.4 Strategy-based construction of multi-indices 11
1.5 Localization to single grid elements . 16

2 Programmer interface for function space bases 17
2.1 The interface for a global function space basis 18
2.2 The user interface for a localized basis 20
2.3 The user interface of the tree of local bases 22
2.4 Multi-indices . 24

3 Constructing trees of function space bases 27
3.1 Basis implementations provided by dune-functions 28
3.2 Combining bases into trees . 29

4 Treating subtrees as separate bases 33

5 Combining global bases and coefficient vectors 34
5.1 Vector backends . 35
5.2 Interpreting coefficient vectors as finite element functions 36
5.3 Interpolation . 37

6 Example: Solving the Stokes equation with dune-functions 40
6.1 The Stokes equation . 40
6.2 The driven-cavity benchmark . 41
6.3 Implementation . 42

References 53

1 Function space bases

Before we can explain the programmer interface for bases of discrete function spaces
in Chapter 2, we need to say a few words about how these bases can be endowed with
an abstract tree structure. Readers who are only interested in finite element spaces of
scalar-valued functions may try to proceed directly to Chapter 2. They should only
know that whenever a local finite element tree is mentioned there, this tree consists
of a single node only, which is the local finite element basis. Similarly, for a scalar
finite element space the tree of multi-indices used to index the basis functions simply
represents a contiguous, zero-starting set of natural numbers.

4

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

1.1 Trees of function spaces

Throughout this paper we assume that we have a single fixed domain Ω, and all
function spaces that we consider are defined on this domain. The focus is on spaces of
functions that are piecewise polynomial with respect to a grid, but that is not actually
required yet.

For a set R we denote by RΩ := {f : Ω→ R} the set of all functions mapping from
Ω to R. For domains Ω ⊂ Rd we write Pk(Ω) ⊂ RΩ for the space of all scalar-valued
continuous piecewise polynomials of degree at most k on Ω with respect to some given
triangulation. We will omit the domain if it can be inferred from the context.

Considering the different finite element spaces that appear in the literature, there
are some that we will call irreducible. By this term we mean all bases of scalar-valued
functions, but also others like the Raviart–Thomas basis that cannot easily be written
as a combination of simpler bases. Many other finite element spaces arise naturally as
a combination of simpler ones. There are primarily two ways how two vector spaces
V and W can be combined to form a new one: sums and products.4

For sums, both spaces need to have the same range space R, and thus both be
subspaces of RΩ. Then the vector space sum

V +W := {v + w : v ∈ V, w ∈W}

in RΩ will have that same range space. For example, a P2-space can be viewed as a P1-
space plus a hierarchical extension spanned by bubble functions [1]. XFEM spaces [10]
are constructed by adding particular weighted Heaviside functions to a basic space to
capture free discontinuities. The dune-functions module does not currently support
constructing sums of finite element bases, but this may be added in later versions.

The second way to construct finite element spaces from simpler ones uses Cartesian
products. Let V ⊂ (Rr1)Ω and W ⊂ (Rr2)Ω be two function spaces. Then we define
the product of V and W as

V ×W :=
{

(v, w) : v ∈ V, w ∈W
}
.

Functions from this space take values in Rr1 × Rr2 = Rr1+r2 . It should be noted that
the Cartesian product of vector spaces must not be confused with the tensor product
of these spaces. Rather, the k-th power of a single space can be viewed as the tensor
product of that space with Rk, i.e,

(V)k = V × · · · × V︸ ︷︷ ︸
k−times

= Rk ⊗ V.

The product operation allows to build vector-valued and mixed finite element spaces
of arbitrary complexity. For example, the space of first-order Lagrangian finite ele-
ments with values in R3 can be seen as the product P1 × P1 × P1. The lowest-order
Taylor–Hood element is the product P2×P2×P2×P1 of P2×P2×P2 for the velocities

4While these are also called internal and external sums, respectively, we stick to the terminology
sum and product in the following.

5

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

(P2 × P2 × P2)× P1

P2 × P2 × P2

P2 P2 P2

P1

Figure 1: Function space tree of the Taylor–Hood space (P2 × P2 × P2)× P1

with P1 for the pressure. More factor bases can be included easily, if necessary. We
call such products of spaces composite spaces.

In the Taylor–Hood space, the triple P2×P2×P2 forms a semantic unit—it contains
the components of a velocity field. The associativity of the product allows to write
the Taylor–Hood space as (P2×P2×P2)×P1, which makes the semantic relationship
clearer. Grouped expressions of this type are conveniently visualized as tree struc-
tures. This suggests to interpret composite finite element spaces as tree structures. In
these structures, leaf nodes represent scalar or otherwise irreducible spaces, and inner
nodes represent products of their children. Subtrees then represent composite finite
element spaces. Figure 1 shows the Tayor–Hood finite element space in such a tree
representation. Note that in this document all trees are rooted and ordered, i.e., they
have a dedicated root note, and the children of each node have a fixed given ordering.
Based on this child ordering we associate to each child the corresponding zero-based
index.

While the inner tree nodes may initially appear like useless artifacts of the tree
representation, they are often extremely useful because we can treat the subtrees
rooted in those nodes as individual trees in their own right. This often allows to reuse
existing algorithms that expect to operate on those subtrees in more complex settings.

1.2 Trees of function space bases

The multiplication of finite-dimensional spaces naturally induces a corresponding op-
eration on bases of such spaces. We introduce a generalized tensor product notation:
Consider linear ranges R0, . . . , Rm−1 of function spaces RΩ

0 , . . . , R
Ω
m−1, and the i-th

canonical basis vector ei in Rm. Then

ei ⊗ f := (0, . . . , 0, f︸︷︷︸
i-th entry

, 0, . . . , 0) ∈
m−1∏
j=0

(
RΩ
j

)
=
(m−1∏
j=0

Rj

)Ω

,

where 0 in the j-th position denotes the zero-function in RΩ
j . Let Λi be a function

space basis of the space Vi = span Λi for i = 0, . . . ,m − 1. Then a natural basis Λ of

6

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

(ΛP2
t ΛP2

t ΛP2
) t ΛP1

ΛP2 t ΛP2 t ΛP2

ΛP2
ΛP2

ΛP2

ΛP1

Figure 2: Function space basis tree of the Taylor–Hood space (P2 × P2 × P2)× P1

the product space

V0 × · · · × Vm−1 =

m−1∏
i=0

Vi =

m−1∏
i=0

span Λi

is given by

Λ = Λ0 t · · · t Λm−1 =

m−1⊔
i=0

Λi :=

m−1⋃
i=0

ei ⊗ Λi. (1)

The product ei⊗Λi is to be understood element-wise, and the “disjoint union” symbol
t is used here as a simple short-hand notation for (1) and not to be understood as an
associative binary operation. Using this new notation we have

span Λ = span
(
Λ0 t · · · t Λm−1

)
= (span Λ0)× · · · × (span Λm−1).

Similarly to the case of function spaces, bases can be interpreted as trees. If we
associate a basis ΛV to each space V in the function space tree, then the induced
natural function space basis tree is obtained by simply replacing V by ΛV in each
node. For the Taylor–Hood basis this leads to the tree depicted in Figure 2.

1.3 Indexing basis functions by multi-indices

To work with the basis of a finite element space, the basis functions need to be indexed.
Indexing the basis functions is what allows to address the corresponding vector and
matrix coefficients in suitable vector and matrix data structures. In simple cases,
indexing means simply enumerating the basis functions with natural numbers, but for
many applications hierarchically structured matrix and vector data structures are more
natural or efficient. This leads to the idea of hierarchically structured multi-indices.

Definition 1 (Multi-indices). A tuple I ∈ Nk0 for some k ∈ N0 is called a multi-
index of length k, and we write |I| := k. The set of all multi-indices is denoted by
N =

⋃
k∈N0

Nk0 .

7

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

(ΛP2
t ΛP2

t ΛP2
) t ΛP1

ΛP2 t ΛP2 t ΛP2

ΛP2

λP2
0

. . . λP2
n2−1

ΛP2

λP2
0

. . . λP2
n2−1

ΛP2

λP2
0

. . . λP2
n2−1

ΛP1

λP1
0

. . . λP1
n1−1

Figure 3: Tree of basis vectors for the Taylor–Hood basis

To establish some structure in a set of multi-indices it is convenient to consider
prefixes.

Definition 2 (Multi-index prefixes).

1. If I ∈ N takes the form I = (I0, I1) for I0, I1 ∈ N , then we call I0 a prefix of
I. If additionally |I1| > 0, then we call I0 a strict prefix of I.

2. For I, I0 ∈ N and a set M⊂ N :

a) We write I = (I0, . . .), if I0 is a prefix of I,

b) we write I = (I0, •, . . .), if I0 is a strict prefix of I,

c) we write (I0, . . .) ∈M, if I0 is a prefix of some I ∈M,

d) we write (I0, •, . . .) ∈M, if I0 is a strict prefix of some I ∈M.

It is important to note that the multi-indices from a given set do not necessarily all
have the same length. For an example, Figure 3 illustrates the set of all basis functions
by extending the basis tree of Figure 2 by leaf nodes for individual basis functions. A
possible indexing of the basis functions of the Taylor–Hood basis ΛTH then uses multi-
indices of the form (0, i, j) for velocity components, and (1, k) for pressure components.
For the velocity multi-indices (0, i, j), the i = 0, . . . , 2 determines the component of the
velocity vector field, and the j = 0, . . . , n2 − 1 := |ΛP2

| − 1 determines the number of
the scalar P2 basis function that determines this component. For the pressure multi-
indices (0, k) the k = 0, . . . , n1 − 1 := |ΛP1 | − 1 determines the number of the P1 basis
function for the scalar P1 function that determines the pressure.

It is evident that the complete set of these multi-indices can again be associated to
a rooted tree. In this tree, the multi-indices correspond to the leaf nodes, their strict
prefixes correspond to interior nodes, and the multi-index digits labeling the edges are

8

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

()

(0)

(0, 0)

(0, 0, 0)

0

. . . (0, 0, n2 − 1)

n2 − 1

0

(0, 1)

(0, 1, 0)

0

. . . (0, 1, n2 − 1)

n2 − 1

1

(0, 2)

(0, 2, 0)

0

. . . (0, 2, n2 − 1)

n2 − 1

2

0

(1)

(1, 0)

0

. . . (1, n1 − 1)

n1 − 1

1

Figure 4: Index tree for the Taylor–Hood basis inherited from the basis tree

the indices of the children within the ordered tree. Prefixes can be interpreted as paths
from the root to a given node.

This latter fact can be seen as the defining property of index trees. Indeed, a set of
multi-indices (together with all its strict prefixes) forms a tree as long as it is consistent
in the sense that the multi-indices can be viewed as the paths to the leafs in an ordered
tree. That is, the children of each node are enumerated using consecutive zero-based
indices and paths to the leafs (i.e., the multi-indices) are built by concatenating those
indices starting from the root and ending in a leaf. Since the full structure of this tree
is encoded in the multi-indices associated to the leafs we will—by a slight abuse of
notation—call the set of multi-indices itself a tree from now on.

Definition 3. A set I ⊂ N is called an index tree if for any (I, i, . . .) ∈ I there are
also (I, 0, . . .), (I, 1, . . .), . . . , (I, i− 1, . . .) ∈ I, but I /∈ I.

The index tree for the example indexing of the Taylor–Hood basis given above is
shown in Figure 4.

Definition 4. Let (I, . . .) ∈ I, i.e., I is a prefix of multi-indices in I. Then the size
of I relative to I is given by

deg+
I [I] := max{k : ∃(I, k, . . .) ∈ I}+ 1. (2)

In terms of the ordered tree associated with I this corresponds to the out-degree of
I, i.e., the number of direct children of the node indexed by I.

Using the idea of multi-index trees, an indexing of a function space basis is an
injective map from the leaf nodes of a tree of basis functions to the leafs of an index
tree.

Definition 5. Let M be a finite set and ι : M → N an injective map whose range
ι(M) forms an index tree. Then ι is called an index map for M . The index map is
called uniform if additionally ι(M) ⊂ Nk0 for some k ∈ N, and flat if ι(M) ⊂ N0.

9

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

()

(0)

(0, 0)

(0, 0, 0)

0

(0, 0, 1)

1

(0, 0, 2)

2

0

. . . (0, n2 − 1)

(0, n2 − 1, 0)

0

(0, n2 − 1, 1)

1

(0, n2 − 1, 2)

2

n2 − 1

0

(1)

(1, 0)

0

. . . (1, n1 − 1)

n1 − 1

1

Figure 5: Index tree for Taylor–Hood with blocking of velocity components

Continuing the Taylor–Hood example, if all basis functions ΛTH = {λI} of the whole
finite element tree are indexed by multi-indices of the above given form, and if X is
a coefficient vector that has a compatible hierarchical structure, then a finite element
function (vh, ph) with velocity vh and pressure ph defined by the coefficient vector X
is given by

(vh, ph) =

2∑
i=0

n2−1∑
j=0

X(0,i,j)λ(0,i,j) +

n1−1∑
k=0

X(1,k)λ(1,k), (3)

with basis functions

λ(0,i,j) = e0 ⊗ (ei ⊗ λP2
j), i = 0, 1, 2, and λ(1,k) = e1 ⊗ λP1

k .

Introducing the corresponding index map ι : ΛTH → N with ι(λI) = I on the set ΛTH

of all basis functions we can write this in compact form as

(vh, ph) =
∑

λ∈ΛTH

Xι(λ)λ =
∑

I∈ι(ΛTH)

XIλI .

Alternatively the individual velocity and pressure fields vh and ph are given by

vh =

2∑
i=0

n2−1∑
j=0

X(0,i,j)(ei ⊗ λP2
j), ph =

n1−1∑
k=0

X(1,k)λ
P1

k .

In the previous example, the index tree was isomorphic to the basis function tree
depicted in Figure 3. However, one may also be interested in constructing multi-indices
that do not mimic the structure of the basis function tree: For example, to increase data
locality in assembled matrices for the Taylor–Hood basis it may be preferable to group

10

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

Figure 6: Two matrix occupation patterns for different indexings of the Taylor–Hood
bases. Left: Corresponding to the index tree of Figure 4. Right: Corre-
sponding to the index tree of Figure 5.

all velocity degrees of freedom corresponding to a single P2 basis function together,
i.e., to use the index (0, j, i) for the j-th P2 basis function for the i-th component.
The corresponding alternative index tree is shown in Figure 5. Figure 6 shows the
corresponding layouts of a hierarchical stiffness matrix.

Alternatively, the case of indexing all basis functions from the Taylor–Hood basis
with a single natural number can be represented by an index tree with 3n2 + n1 leaf
nodes all directly attached to a single root. Different variations of such a tree differ
by how the degrees of freedom are ordered.

1.4 Strategy-based construction of multi-indices

Let Λ be the set of basis functions of a finite element basis tree. In principle, dune-
functions allows any indexing scheme that is given by an index map, i.e., any map
ι : Λ→ N that is injective and whose range ι(Λ) is an index tree. In practice, out of
this large set of maps, dune-functions allows to construct the most important ones
systematically using certain transformation rules.

Consider a tree of function space bases in the sense of Section 1.2. We want to
construct an indexing for this tree, that is an index tree I and a bijection ι from the set
of all basis functions Λ to the multi-indices in I. The construction proceeds recursively.
To describe it, we assume in the following that Λ is a node in the function space basis
tree, i.e., it is the set of all basis functions corresponding to a node V := span Λ in the
function space tree.

To end the recursion, we assume that an index map ι : Λ→ N is given if V = span Λ
is a leaf node of the function space tree. The most obvious choice would be a flat zero-
based index of the basis functions of Λ. However, other choices are possible. For
example, in case of a discontinuous finite element space, each basis function λ ∈ Λ

11

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

could also be associated to a two-digit multi-index ι(λ) = (i, k), where i is the index
of the grid element that forms the support of λ, and k is the index of λ within this
element.

For the actual recursion, if Λ is any non-leaf node in the function space basis tree,
then it takes the form

Λ = Λ0 t · · · t Λm−1 =

m−1⋃
i=0

ei ⊗ Λi,

where Λ0, . . . ,Λm−1 are the direct children of Λ, i.e., the sets of basis functions of the
child spaces {span Λi}i=0,...,m−1 of the product space

span Λ = span
(
Λ0 t · · · t Λm−1

)
= (span Λ0)× · · · × (span Λm−1).

For the recursive construction we assume that an index map ιi : Λi → N on Λi is
given for any i = 0, . . . ,m− 1. The task is to construct an index map ι : Λ→ N from
the maps ιi. In the following we describe four strategies to achieve this; all have been
implemented in dune-functions. When reading about these strategies, remember
that any λ ∈ Λ has a unique representation λ = ei ⊗ λ̂ for i ∈ {0, . . . ,m − 1} and

some λ̂ ∈ Λi. It will be necessary to distinguish the special case that all children Λi
are identical.

Definition 6. An inner node Λ will be called power node if all of its children Λi are
identical and equipped with identical index maps ιi. An inner node that is not a power
node is called composite node.

This definition is needed because some of the following strategies can only be applied
to power nodes.

• BlockedLexicographic: This strategy prepends the child index to the multi-
index within the child basis. That is, the index map ι : Λ→ N is given by

ι(ei ⊗ λ̂) = (i, ιi(λ̂)).

It is straightforward to show that ι is always an index map for Λ. To demon-
strate the strategy the following table shows the multi-indices at inner nodes,
when the basis functions of the subtrees Λ0,Λ1, . . . are labeled by multi-indices
(I0), (I1), . . . for Λ0, (K0), (K1), . . . for Λ1, and so on.

indices for Λ0 indices for Λ1 . . . indices for Λ

ι0(λ̂0,0) = (I0) ι(e0 ⊗ λ̂0,0) = (0, I0)

ι0(λ̂0,1) = (I1) ι(e0 ⊗ λ̂0,1) = (0, I1)

ι1(λ̂1,0) = (K0) ι(e1 ⊗ λ̂1,0) = (1,K0)

ι1(λ̂1,1) = (K1) ι(e1 ⊗ λ̂1,1) = (1,K1)

ι1(λ̂1,2) = (K2) ι(e1 ⊗ λ̂1,2) = (1,K2)
.

12

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

• BlockedInterleaved: This strategy is only well-defined for power nodes. It
appends the child index to the multi-index within the child basis. That is, the
index map ι : Λ→ N is given by

ι(ei ⊗ λ̂) = (ιi(λ̂), i).

An example is given in the following table:

indices for Λ0 indices for Λ1 . . . indices for Λ

ι0(λ̂0,0) = (I0) ι(e0 ⊗ λ̂0,0) = (I0, 0)

ι1(λ̂1,0) = (I0) ι(e1 ⊗ λ̂1,0) = (I0, 1)
.

ι0(λ̂0,1) = (I1) ι(e0 ⊗ λ̂0,1) = (I1, 0)

ι1(λ̂1,1) = (I1) ι(e1 ⊗ λ̂1,1) = (I1, 1)
.

ι0(λ̂0,2) = (I2) ι(e0 ⊗ λ̂0,2) = (I2, 0)

ι1(λ̂1,2) = (I2) ι(e1 ⊗ λ̂1,2) = (I2, 1)
.

To see that this strategy does not work for general composite nodes, consider
ι0(Λ0) = {0} and ι1(Λ1) = {(0, 0)}. Then ι(Λ) = {(0, 0), (0, 0, 1)} which is not
an index tree.

Unlike the previous two strategies, the following two do not introduce new multi-index
digits. Such strategies are called flat.

• FlatLexicographic: This strategy merges the roots of all index tree ιi(Λi) into

a single new one. Assume that we split the multi-index ιi(λ̂) according to

ιi(λ̂) = (i0, I), (4)

where i0 ∈ N0 is the first digit. The index map ι : Λ→ N is then given by

ι(ei ⊗ λ̂) = (Li + i0, I),

where the offset Li for the first digit is computed by

Li =

i−1∑
j=0

deg+
ιj(Λj)[()].

This construction offsets the first digits of the multi-indices of all basis functions
from Λj with j > 0 such that they form a consecutive sequence. This guarantees
that ι is always an index map for Λ. An example is given in the following table:

indices for Λ0 indices for Λ1 . . . indices for Λ

ι0(λ̂0,0) = (0, I0) ι(e0 ⊗ λ̂0,0) = (0, I0)

ι0(λ̂0,1) = (1, I1) ι(e0 ⊗ λ̂0,1) = (1, I1)

ι1(λ̂1,0) = (0,K0) ι(e1 ⊗ λ̂1,0) = (2,K0)

ι1(λ̂1,1) = (0,K1) ι(e1 ⊗ λ̂1,1) = (2,K1)

ι1(λ̂1,2) = (1,K2) ι(e1 ⊗ λ̂1,2) = (3,K2)
.

13

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

The digit zero deliberately appears twice in the column for Λ1, to demonstrate
that a consecutive first digit is not required.

• FlatInterleaved: This strategy again only works for power nodes. It also
merges the roots of all child index trees ιi(Λi) into a single one, but it inter-

leaves the children. Again using the splitting ιi(λ̂) = (i0, I) introduced in (4),
the index map ι : Λ→ N is given by

ι(ei ⊗ λ̂) = (i0m+ i, I),

where the fixed stride m is given by the number of children of Λ. The following
table shows an example:

indices for Λ0 indices for Λ1 . . . indices for Λ

ι0(λ̂0,0) = (0, I0) ι(e0 ⊗ λ̂0,0) = (0, I0)

ι1(λ̂1,0) = (0, I0) ι(e1 ⊗ λ̂1,0) = (1, I0)
.

ι0(λ̂0,1) = (1, I1) ι(e0 ⊗ λ̂0,1) = (m+ 0, I1)

ι1(λ̂1,1) = (1, I1) ι(e1 ⊗ λ̂1,1) = (m+ 1, I1)
.

ι0(λ̂0,2) = (2, I2) ι(e0 ⊗ λ̂0,2) = (2m+ 0, I2)

ι1(λ̂1,2) = (2, I2) ι(e1 ⊗ λ̂1,2) = (2m+ 1, I2)
.

Again, for this interleaved strategy, ι may not be an index map for general
composite nodes.

These four strategies are offered by dune-functions, but there are others that are
sometimes useful. Experimentally, dune-functions therefore also provides a way to
use self-implemented custom rules.

To further illustrate the four index transformation strategies, we return to the
Taylor–Hood example. While the indexing schemes proposed for this example so far
where introduced in an ad-hoc way, we will now systematically apply the above given
strategies. Recall that the Taylor–Hood basis is denoted by

ΛTH = (ΛP2
t ΛP2

t ΛP2
) t ΛP1

.

For the bases ΛP1
,ΛP2

of the elementary spaces P1, P2 we consider fixed given flat
index maps

ιP1
(ΛP1

)→ N0, ιP2
(ΛP2

)→ N0.

These are typically constructed by enumerating the grid entities the basis functions
are associated to. Then the interior product space basis

ΛV = ΛP2
t ΛP2

t ΛP2

14

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

BL(BL) BL(BI) BL(FL) BL(FI) FL(BL) FL(BI) FL(FL) FL(FI)
vx0,0 (0, 0, 0) (0, 0, 0) (0, 0) (0, 0 + 0) (0, 0) (0, 0) (0) (0 + 0)
vx0,1 (0, 0, 1) (0, 1, 0) (0, 1) (0, 3 + 0) (0, 1) (1, 0) (1) (3 + 0)
vx0,2 (0, 0, 2) (0, 2, 0) (0, 2) (0, 6 + 0) (0, 2) (2, 0) (2) (6 + 0)
vx0,3 (0, 0, 3) (0, 3, 0) (0, 3) (0, 9 + 0) (0, 3) (3, 0) (3) (9 + 0)

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
vx1,0 (0, 1, 0) (0, 0, 1) (0, n2 + 0) (0, 0 + 1) (1, 0) (0, 1) (n2 + 0) (0 + 1)
vx1,1 (0, 1, 1) (0, 1, 1) (0, n2 + 1) (0, 3 + 1) (1, 1) (1, 1) (n2 + 1) (3 + 1)
vx1,2 (0, 1, 2) (0, 2, 1) (0, n2 + 2) (0, 6 + 1) (1, 2) (2, 1) (n2 + 2) (6 + 1)
vx1,3 (0, 1, 3) (0, 3, 1) (0, n2 + 3) (0, 9 + 1) (1, 3) (3, 1) (n2 + 3) (9 + 1)

...
...

...
...

...
...

...
...

...
vx2,0 (0, 2, 0) (0, 0, 2) (0, 2n2 + 0) (0, 0 + 2) (2, 0) (0, 2) (2n2 + 0) (0 + 2)
vx2,1 (0, 2, 1) (0, 1, 2) (0, 2n2 + 1) (0, 3 + 2) (2, 1) (1, 2) (2n2 + 1) (3 + 2)
vx2,2 (0, 2, 2) (0, 2, 2) (0, 2n2 + 2) (0, 6 + 2) (2, 2) (2, 2) (2n2 + 2) (6 + 2)
vx2,3 (0, 2, 3) (0, 3, 2) (0, 2n2 + 3) (0, 9 + 2) (2, 3) (3, 2) (2n2 + 3) (9 + 2)

...
...

...
...

...
...

...
...

...
p0 (1, 0) (1, 0) (1, 0) (1, 0) (3 + 0) (n2 + 0) (3n2 + 0) (3n2 + 0)
p1 (1, 1) (1, 1) (1, 1) (1, 1) (3 + 1) (n2 + 1) (3n2 + 1) (3n2 + 1)
p2 (1, 2) (1, 2) (1, 2) (1, 2) (3 + 2) (n2 + 2) (3n2 + 2) (3n2 + 2)
...

...
...

...
...

...
...

...
...

Table 1: Different indexing strategies for the Taylor–Hood basis functions

together with the index map ιP2 is a power node in the sense of Definition 6, while the
tree root

ΛTH = ΛV t ΛP1

is a composite node. The basis functions for the k-th component of the velocity are
denoted by

vxk,i = e0 ⊗ (ek ⊗ λP2
i)

where i = 0, . . . , n2 − 1 for n2 = |ΛP2
| = dimP2 whereas the basis functions for the

pressure are denoted by

pj = e1 ⊗ λP1
j

where j = 0, . . . , n1 − 1 for n1 = |ΛP1
| = dimP1.

As two of the above given strategies can be used for composite nodes, while all four
can be applied to power nodes we obtain eight different index maps for the Taylor–Hood
basis ΛTH. They are listed in Table 1, where the label X(Y) means that strategy X is
used for the outer product and strategy Y for the inner product. For X and Y we use
the abbreviations BL (BlockedLexicographic), BI (BlockedInterleaved), FL (FlatLexi-
cographic), and FI (FlatInterleaved). Notice that the index maps depicted in Figure 4
and Figure 5 are reproduced for the strategies BL(BL) and BL(BI), respectively.

15

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

1.5 Localization to single grid elements

For the most part, access to finite element bases happens element by element. It is
therefore important to consider the restrictions of bases to single grid elements. In
contrast to the previous sections we now require that there is a finite element grid for
the domain Ω. For simplicity we will assume that all bases consist of functions that
are defined piecewise with respect to this grid, but it is actually sufficient to require
that the restrictions of all basis functions to elements of the grid can be constructed
cheaply.

Consider the restrictions of all basis functions λ ∈ Λ of a given tree to a single fixed
grid element e. Of these restricted functions, we discard all those that are constant
zero functions on e. All others form the local basis on e

Λ|e := {λ|e : λ ∈ Λ, int(suppλ) ∩ e 6= ∅}.

The local basis forms a tree that is isomorphic to the original function space basis tree,
with each global function space basis Λ replaced by its local counterpart Λ|e.

For a given index map ι of Λ, this natural isomorphism from the global to the local
tree naturally induces a localized version of ι given by

ι|e : Λ|e → I, ι|e(λe) := ι(λ).

This is the map that associates shape functions on a given grid element e to the multi-
indices of the corresponding global basis functions. Note that the map ι|e itself is not
an index map in the sense of Definition 5 since ι|e(Λ|e) is only a subset of the index
tree ι(Λ), and not always an index tree itself.

In order to index the basis functions in Λ|e efficiently we introduce an additional
local index map

ιlocal
Λ|e : Λ|e → N ,

such that ιlocal
Λ|e (Λ|e) is an index tree. The index ιlocal

Λ|e (λ|e) is called the local index of

λ (with respect to e). To distinguish it from the indices generated by ι we call ι(λ)
the global index of λ. The local index is typically used to address the element stiffness
matrix. In principle, this indexing can use another non-flat index tree, which does
not have to coincide with the index tree for the global basis. This means that the
local index of a shape function can again be a multi-index, but the types, lengths and
orderings can be completely unrelated to the corresponding global indices. This would
allow to use nested types for element stiffness matrices and load vectors. As explained
in Chapter 2, the dune-functions implementation is fairly restrictive here, and only
allows flat local indices, i.e., ιlocal

Λ|e (Λ|e) ⊂ N0.

In addition, we introduce for each leaf local basis Λ̂|e of the full local basis tree
another local index map

ιleaf-local
Λ̂|e

: Λ̂|e → N0.

16

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

GlobalBasis

LocalView

GridView

Element

Tree

hands out

hands out

binds to

t

t ΛP1
|e

ΛP2
|e ΛP2

|e ΛP2
|e

Figure 7: Overview of the classes making up the interface to finite element space bases

As there is no hierarchical structure involved, this index is simply a natural number.
The index ιleaf-local

Λ̂|e
(λ|e) is called the leaf-local index of λ (with respect to e).

In an actual programming interface one typically accesses basis functions by indices
directly. We will later see that in dune-functions the leaf-local index is the shape
function index of the dune-localfunctions module. Hence the dune-functions API
needs to implement the map

ιleaf→local
e := ιlocal

Λ|e ◦ (ιleaf-local
Λ̂|e

)−1

mapping leaf-local indices to local indices and

ιlocal→global
e := ι|e ◦ (ιlocal

Λ|e)−1

mapping local indices to global multi-indices.

2 Programmer interface for function space bases

The design of the dune-functions interface for bases of function spaces follows the
ideas of the previous section. The main interface concept are global basis objects
that represent trees of function space bases. These trees can be localized to individual
elements of the grid. Such a localization provides access to the (tree of) shape functions
there, together with the two shape-function index maps ιleaf→local

e and ιlocal→global
e . The

structure of the interface is visualized in Figure 7.

17

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

Notation

The dune-functions module is implemented in the C++ programming languange.
All header include paths start with dune/functions/, and all code is contained
in the namespace Dune::Functions. Internally, dune-functions depends on the
dune-typetree module, which implements abstract compile-time tree data structures.
The global basis interface described below is not enforced by deriving from specific base
classes. Instead, dune-functions is based on C++-style duck-typing [9], i.e., any C++
type providing the required interface is a valid implementation of that interface.

Throughout this text we will introduce the programmer interfaces by presenting
the interface declaration, explaining its meaning, and giving examples of its usage.
In order to distinguish interface declarations from code examples they are formatted
differently. Furthermore, implementation defined types and arguments are highlighted.
The following shows an example of an interface declaration:

// Declaration of type T referring to an implementation−defined type
using T = <implementation defined>;

// Declaration of method foo
T foo(int);

// Declaration of class Bar with implementation−defined constructor arguments
class Bar {

public:

Bar(<args>);

};

In contrast, an example for using this interface would be formatted like this:

// Call foo() and store result
T t = foo(1);

// Construct an object of type Bar
auto bar = Bar(t, <more args>);

2.1 The interface for a global function space basis

We start by describing the user interface for global bases. Since we are discussing
duck-typing interfaces, all class names used below are generic. A tree of global bases
is implemented by one class which, in the following, we will call GlobalBasis, and
which can have an arbitrary number of template parameters. All types and methods
listed in the following interface declaration shall be public members of the generic
implementation class GlobalBasis.

As each basis implementation may require its own specific data for construction, we
do not enforce a precise set of constructors.

GlobalBasis(<implementation defined>);

18

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

Each GlobalBasis may have one or several constructors with implementation-depen-
dent lists of arguments.

The main feature of a GlobalBasis is to give access to basis functions and their
indices. Most of this access happens through the localization of the basis to sin-
gle grid elements (Section 1.5). In the programmer interface, this localization is
called LocalView. Objects of type LocalView are obtained from GlobalBasis ob-
jects through the method

using LocalView = <implementation defined>;

LocalView localView() const;

The precise return type of the localView method is implementation-dependent. Ob-
jects created by the method have undefined state, and need to be attached to individual
grid elements in a process called binding. The details are explained in Section 2.2.

Several methods of a GlobalBasis provide information on the sizes of the bases
contained in the tree. The total number of basis functions of the global basis is
exported via the method

using size_type = <implementation defined>;

size_type dimension() const;

This method can be used to allocate vector containers if flat multi-indices are used.
However, the information provided by the dimension method is generally not suffi-
cient to allocate hierarchical containers to be accessed by more general multi-indices.
Therefore, the basis provides more structural information of those multi-indices via
the method

using SizePrefix = ReservedVector<implementation defined>;

size_type size(const SizePrefix& prefix) const;

The parameter prefix is a multi-index itself. If I is the set of all global multi-indices
of the basis and prefix is a prefix for this set, then size(prefix) returns the size
deg+
I [prefix] of I relative to prefix defined in (2), i.e., the number of direct children

of the node prefix in the index tree. If prefix is not a prefix for I the result is
undefined. If prefix ∈ I, i.e., the prefix is itself one of the multi-indices then the
result is zero. The type SizePrefix is always a container of type ReservedVector

(from the dune-common module). More details are given in Section 2.4. Like all
other types used in the GlobalBasis interface, it is expected to be exported by the
implementation class. For convenience there is also the method

size_type size() const;

returning the same value as size({}), i.e., the number of children of the root of the
index tree. For a scalar basis, this is again the overall number of basis functions.

Finally, each GlobalBasis provides access to the grid view it is defined on by the
method

const GridView& gridView() const;

19

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

The corresponding type is exported as GridView. If the grid view was modified (e.g.,
by local grid refinement), the result of calling any method of the basis is undefined
until the basis has been explicitly updated. For this, call the method

void update(const GridView & gv);

which tells the basis to adapt its local state to the new grid view.

2.2 The user interface for a localized basis

The localization of a function space basis to a single grid element is represented by an
interface called LocalView. Objects of type LocalView are returned by the method
GlobalBasis::localView(), and there is no way to construct such objects directly.
All types and methods listed in the following interface declaration are public members
of the generic class LocalView.

A freshly constructed LocalView object is not completely initialized yet. To truly
have the object represent the basis localization on a particular element, it must be
bound to that element. This is achieved by calling

using GridView = typename GlobalBasis::GridView;

using Element = typename GridView::template Codim<0>::Entity;

void bind(const Element& e);

Once this method has been called, the LocalView object is fully set up and can be
used. The call may incorporate expensive computations needed to precompute the
local basis functions and their global indices. The local view can be bound to another
element at any time by calling the bind method again. To set the local view back to
the unbound state again, call the method

void unbind();

The local view will store a copy of the element it is bound to, which is accessible via

const Element& element() const;

A bound LocalView object provides information about the size of the local basis at
the current element. The total number of basis functions associated to the local view
at the current element is returned by

using size_type = typename GlobalBasis::size_type;

size_type size() const;

In the language of Chapter 1, this method computes the number |Λ|e|.
To allow preallocation of buffers for local functions, the method

size_type maxSize() const;

returns the maximum return value of the size method for all elements in the grid
view associated to the global basis, i.e., it computes maxe |Λ|e|. As this information

20

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

does not depend on a particular element, the method maxSize can even be called in
unbound state.

As an example, suppose that basis is an object of type Dune::Functions::TaylorHoodBasis,
which implements the Taylor–Hood basis that has been used for examples in the pre-
vious section. The following code loops over all elements of the grid view and prints
the numbers of degrees of freedom per element:

auto localView = basis.localView();

for (auto&& element : elements(basis.gridView()))

{

localView.bind(element);

std::cout << "Element with " << localView.size()

<< " degrees of freedom" << std::endl;

}

Access to the actual local basis functions is provided by the method

using Tree = <implementation defined>;

const Tree& tree() const;

This encapsulates the set Λ|e of basis functions localized to the element e, organized in
the tree of function space bases. While the tree itself can be queried in unbound state,
the local view must be bound in order to use most of the trees methods. A detailed
discussion of the interface of the tree object is given below.

For any of the local basis functions in the local tree accessible by tree() the global
multi-index is provided by the method

using MultiIndex = <implementation defined>;

MultiIndex index(size_type i) const;

The argument for this method is the local index of the basis function within the tree
as returned by node.localIndex(k); here node is a leaf node of the tree provided
by tree(), and k is the number of the shape function within the corresponding local
finite element (see below). Hence the index method implements the map ιlocal→global

e

introduced in Section 1.5, which maps local indices to global multi-indices. Accessing
the same global index multiple times is expected to be cheap, because implementations
are supposed to pre-compute and cache indices during bind(Element). The result of
calling index(size_type) in unbound state is undefined.

Extending the previous example a little, the following loop prints the global indices
for each degree of freedom of each element.

auto localView = basis.localView();

for (auto&& element : elements(basis.gridView()))

{

localView.bind(element);

for (std::size_t i=0; i<localView.size(); i++)

std::cout << localView.index(i) << std::endl;

}

21

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

When this code is run for a Taylor–Hood basis on a two-dimensional triangle grid, it
will print 15 multi-indices per element, because a Taylor–Hood element has 12 velocity
degrees of freedom and 3 pressure degrees of freedom per triangle.

Finally, the global basis of type GlobalBasis is known by the LocalView object,
and exported by the globalBasis method.

using GlobalBasis = <implementation defined>;

const GlobalBasis& globalBasis() const;

Therefore, code that is given only a LocalView object can retrieve the global basis
from it, and the grid view from there.

2.3 The user interface of the tree of local bases

The local view provides access to local basis functions of an element by exporting a
Tree object, which keeps the local basis functions in its leaves. The tree structure is
encoded in the type of the Tree object, using the infrastructure of the dune-typetree

module.
The object returned by the LocalView::tree method is not actually a tree, but

rather (a const reference to) the root node of the tree. To navigate within this tree,
any non-leaf node allows to access its children using the two methods

template<class... ChildIndices>

auto child(ChildIndices... childIndices);

template<class ChildTreePath>

auto child(ChildTreePath childTreePath);

The arguments to these methods are the paths from the current node to the desired
descendants. Notice that both methods only provide access to strict descendants, while
accessing the node itself using an empty path is not supported.

For the first method, the path is passed as a sequence of indices. Indices referring to
children of a power node can be passed as integer values, typically of type std::size_t.
Indices referring to children of a composite node have to be passed statically as objects
of type Dune::index_constant<i>.5 For convenience global constants _0,_1, . . . of
this type are implemented in the Dune::Indices namespace. Continuing the example
of the previous section, if localView is a local view of the TaylorHoodBasis localized
to a particular grid element, then the leaf node for the second velocity component can
be obtained by

using namespace Indices; // Import namespace with index constants 0, 1, 2, etc
const auto& node = localView.tree().child(_0, 1);

Note how the index constant Dune::Indices::_0 is used to address the velocity node,
because the tree root is a composite node whose child nodes are of different type.
Within the velocity subtree, all three children are identical, and the second one can
be accessed by the run-time integer 1.

5 . . . which is a shortcut for std::integral_constant<std::size_t, i>.

22

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

The second child method allows to pass the tree path in a dedicated container.
Such a container needs to handle sequences of static and run-time values. The dune-

functions module uses Dune::TypeTree::HybridTreePath for this, which we de-
scribe in detail in Section 2.4. Using a HybridTreePath object, the example looks as
follows:

auto treePath = Dune::TypeTree::treePath(_0, 1);

const auto& node = localView.tree().child(treePath);

At each of its leaf nodes, the localized basis function tree provides the set of all
corresponding shape functions. The method for this is

using FiniteElement = <implementation defined>;

const FiniteElement& finiteElement() const;

The object returned by this method is a LocalFiniteElement as specified in the
dune-localfunctions module. As such, it provides access to shape function values
and derivatives, to the evaluation of degrees of freedom in the sense of [4], and to
the assignment of local degrees of freedom to element faces. The numbering used
by dune-localfunctions for the shape functions coincides with the leaf-local indices
defined in Section 1.5. For example, if node is a leaf node in the localized Taylor–Hood
tree, the following code prints all shape function values of the leaf shape function set
at the point (0, 0, 0) in local coordinates of the appropriate reference element:

const auto& localBasis = node.finiteElement().localBasis();

std::vector<double> values;

localBasis.evaluate({0,0,0}, values);

for (auto v : values)

std::cout << v << std::endl;

To obtain the entries of the element stiffness matrix that corresponds to a given
shape function from a given leaf node, the local index needs to be computed from the
leaf-local index of that shape function. For each local basis function the method

size_type localIndex(size_type i) const;

returns the local index within all local basis functions of the current element associated
to the full local tree. The argument to this method is the index of the local basis
functions within the leaf. In other words, the localIndex method implements the
map ιleaf→local

e introduced in Section 1.5. The return value is not a multi-index. While
in principle all basis functions of the local subtree could be indexed using general
multi-indices, the dune-functions module only supports flat indices here to keep the
implementation simple.

While LocalFiniteElement objects are only available at leaf nodes, the following
methods work at every node in the tree again. Calling

using size_type = <implementation defined>;

size_type size() const;

23

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

returns the total number of local basis functions within the subtree rooted at the
present node. In particular, calling this method for the tree root yields the size of the
element stiffness matrix.

Finally, all nodes provide access to the element which they are bound to via the
method

using Element = <implementation defined>;

const Element& element() const;

2.4 Multi-indices

Multi-indices appear in several places in dune-functions. They are used as global
indices to identify individual basis functions of a function space basis, and for indexing
inner nodes of basis and index trees as well. From an implementation point of view,
basis and index trees differ considerably. Only the localized basis tree explicitly appears
in the programmer interface, whereas index trees appear only implicitly in the form
of sets of indices with the appropriate structure (Definition 3). These differences
require separate multi-index implementations for the different types of trees. We
discuss implementations for both types of trees in turn.

2.4.1 Multi-index implementations for basis trees

The tree of localized basis functions is the only tree that explicitly appears in the
dune-functions programmer interface. The tree structure is encoded as C++ type
information using the tools from the dune-typetree module. Navigation in this tree
requires to manipulate paths from the root to particular nodes. In principle, such a
path is a sequence of integers.

To understand the implementation, remember that non-leaf tree nodes can be of
two types, power and composite (Section 1.4). Since composite nodes have children
of different types, it is not possible to access those children using a dynamic run-time
index. Instead the child index in a composite node has to be encoded in a static way.
For such situations, dune-common offers the type

template <std::size_t i> Dune::index_constant<i>;

which turns the number i into a type, and by this makes it accessible to compile-time
expressions. On the other hand, all children of a power node have the same C++ type,
and can be accessed using a dynamic index of type std::size_t.

In a typical tree, composite and power nodes appear together. It is therefore neces-
sary to have a container that can store both compile-time and run-time integers. This
is achieved by the class

template <class... I>

class HybridTreePath;

from the dune-typetree module.

24

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

Conceptually, a HybridTreePath is a fixed-size container, where each entry can be of
different type. The types of the individual entries are passed as template parameters.
If the type used for an entry is std::size_t, then this entry will have a dynamic
value. If, on the other hand, the type is Dune::index_constant<i>, then its value is
static, and can be used for compile-time decisions.

An object of type HybridTreePath can be used to access the nodes of a localized
basis tree if dynamic tree path entries only appear as child indices for power nodes
in the tree while all other entries are static. For example, to access the leaf nodes
corresponding to the velocity components in the Taylor–Hood ansatz tree depicted in
Figure 2 one would use multi-indices of the type

HybridTreePath<Dune::index_constant<0>, std::size_t>;

whereas the multi-index for the pressure leaf node would use the type

HybridTreePath<Dune::index_constant<1>>;

To construct objects of these types, call

using namespace Dune::Indices;

HybridTreePath<Dune::index_constant<0>, std::size_t> i00(_0,0);

HybridTreePath<Dune::index_constant<0>, std::size_t> i01(_0,1);

HybridTreePath<Dune::index_constant<0>, std::size_t> i02(_0,2);

for the velocity leaf nodes, and

HybridTreePath<Dune::index_constant<1>> i1(_1);

for the pressure node. The constants _0, _1, and _2 are predefined in the namespace
Dune::Indices.

This way of construction is overly verbose, because static indices have to be provided
both as template and as constructor arguments. To simplify the construction of such
objects, the dune-typetree module provides the helper function

template <class... I>

auto TypeTree::treePath(I... i);

which creates a HybridTreePath with the given entries. As this is a free method rather
than a constructor, the entries have to be given only once, and their types are inferred.
The multi-indices of the previous example can be constructed using

auto i00 = TypeTree::treePath(_0, 0);

auto i01 = TypeTree::treePath(_0, 1);

auto i02 = TypeTree::treePath(_0, 2);

auto i1 = TypeTree::treePath(_1);

which is much shorter. To access entries of a HybridTreePath object, the object has
the method

template<std::size_t i>

constexpr decltype(auto) operator[](const Dune::index_constant<i>&) const;

25

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

Depending on the template parameter i, the return type is either std::size_t or
Dune::index_constant<i>. Note that this construction is necessary although the
function is already constexpr: Since HybridTreePath objects are intended to select
children of different type in run-time contexts, they have to encode compile time index
values into the run-time index objects. The latter is only possible by making the types
of those index objects dependent on their compile time values.

However, as objects of type Dune::index_constant can be implicitly converted to
std::size_t, there is also

auto operator[](std::size_t) const;

Hence, to get the first digit of a tree path it is possible to write

std::size_t a = myHybridTreePath[0];

For a tree path in the Taylor–Hood tree this will return 0 or 1 as expected. However,
this return value is not usable in compile-time situations anymore.

These are just the more important methods of the HybridTreePath class. For a
complete description see the online documentation of the dune-typetree module.

2.4.2 Multi-index implementations for index trees

Index trees are formed by the multi-indices that are used to label basis functions.
Conceptually, there are two such trees in the dune-functions interface: the tree
of global indices, and the tree of local indices. To keep the implementation simple,
dune-functions only allows flat (i.e., single-digit) multi-indices for the local index
tree. Therefore, only data types for global indices need to be discussed.

Unlike the tree paths of the previous section, global indices are run-time constructs.
A single C++ type represents all such indices for a given basis, even if that basis has a
non-trivial tree structure. The exact type is selected by the basis implementation, and
can differ from basis to basis. It mainly depends on whether the index is uniform, i.e.,
whether all indices from the set have the same number of digits. Having purely dynamic
multi-indices can be inconvenient when accessing containers such as std::tuple or
MultiTypeBlockVector (from the dune-istl module). However, it has the advantage
that standard run-time loops can be used to iterate over the indices.

Dynamic multi-indices are random-access containers holding entries of a fixed integer
type. All implement a common interface, consisting of two member functions

std::size_t size() const;

auto operator[](std::size_t) const;

The size method returns the number of digits of the multi-index, and operator[]

allows to access each entry by its position. Since multi-indices are typically not changed
by user code, both methods are const. The type used to represent the individual digits
of multi-indices can be selected when instantiating GlobalBasis objects. The default
type is std::size_t.

In the following we will give an overview of the types used to represent multi-indices
in dune-functions. In the most general case, not all multi-indices for a given basis

26

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

have the same number of digits. As examples, consider columns 1, 2, 5, and 6 of
Table 1, which give such numberings for the Taylor–Hood basis. In these cases, multi-
indices are typically represented by the class

template <class T, int k>

class ReservedVector;

from the dune-common module, which is parameterized by the entry type T and a ca-
pacity k. It implements an STL-compatible random-access container with a dynamic
size, which may not exceed k entries. In contrast to a fully dynamic vector implemen-
tation like std::vector<T>, the class ReservedVector stores its entries on the stack.
This avoids dynamic memory management, and makes the implementation much more
efficient. The global multi-indices typically have a small number of digits only with a
known upper bound. Hence the overhead of always using a buffer of size k even for
indices with less than k digits will typically be small.

However, many bases can be indexed by uniform index trees, i.e., sets of indices
where all indices have the same number of digits. In that case, the capacity of a
ReservedVector can be set to the correct length, and no buffer space is wasted.
However, in addition to the buffer, each ReservedVector object has to store the
container length, which is not needed when the index set is known to be uniform.
GlobalBasis objects that implement uniform index sets can therefore opt to use a
fixed-size container type like std::array instead of ReservedVector.

Finally, if the basis is indexed with a flat index, i.e., a multi-index with only a single
digit, then using an array can be a bit cumbersome. Morally, flat multi-indices are
simply natural numbers. However, if i is a std::array of length 1, using it to access
the corresponding entry of a std::vector called vec has to be written as

auto value = vec[i[0]];

To allow the more intuitive syntax

auto value = vec[i];

dune-functions implements the FlatMultiIndex class for the case that the index
of a basis tree is flat. Objects of type FlatMultiIndex behave like objects of type
std::array<T,1>, but additionally, they allow to cast their content to T&. Therefore,
objects of type FlatMultiIndex can be directly used like number types, and like
multi-index types as well.

3 Constructing trees of function space bases

There are various ways to construct finite element bases in dune-functions. A set
of standard bases is provided directly. These can then be combined to form trees.
Conversely, subtrees can be extracted, and they act like complete bases in their own
right.

27

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

3.1 Basis implementations provided by dune-functions

The dune-functions module contains a collection of standard finite element bases.
These can be directly used in finite element simulation codes. At the time of writing
there are:

• LagrangeBasis: Lagrange basis of order k, where k is a compile-time parameter.
This implementation works on all kinds of conforming grids, including grids
with more than one element type. At the time of writing, higher-order spaces
are implemented only partially. Check the online class documentation for the
current status.

• LagrangeDGBasis: Implements a k-th order Discontinuous-Galerkin (DG) ba-
sis with Lagrange shape functions. As a DG basis, it also works well on non-
conforming grids. The polynomial order k is again a compile-time parameter.

• RannacherTurekBasis: An H1-nonconforming scalar basis, which adapts the
idea of the Crouzeix–Raviart basis to cube grids [12].

• BSplineBasis: Implements a B-Spline basis on a structured, axis-aligned grid
as described, e.g., in [5]. Arbitrary orders, dimensions, and knot vectors are
supported, allowing, e.g., to work with C1 elements for fourth-order differential
equations.

Each BSplineBasis object implements a basis on a single patch, and the grid
must correspond to this patch. For this to work, several restrictions apply for
the grid. It must be structured and axis-aligned, and consist of (hyper-)cube
elements only. Further, the element indices must be lexicographic and increase
from the lower left to the upper right domain corner. The element spacing must
match the knot spans. Unfortunately, not all these requirements can be checked
for by the basis, so users have to be a bit careful. Using YaspGrid objects works
well.

Unlike in standard finite element bases, in a B-spline basis the basis func-
tions cannot be associated to grid entities such as vertices, edges, or elements.
The dune-localfunctions programmer interface of a B-spline basis neverthe-
less mandates that a LocalCoefficient object must be available on each ele-
ment, which assigns shape functions to faces of the reference element. For the
BSplineBasis, the behavior of this object is undefined.

• TaylorHoodBasis: An implementation of a first-order Taylor–Hood basis. It
exists mainly to serve as an example of how to directly implement a basis with a
non-trivial tree. Generally, non-trivial product bases can be easily constructed in
a generic way. This approach is described in Chapter 3.2 and it is the preferred
way to construct a Taylor–Hood basis.

For all bases listed above, the shape functions provided by tree.finiteElement()

are implemented in terms of coordinates of the reference element Tref. That is, if a

28

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

grid element e is obtained by the transformation Φe : Tref → e, then the implemented
localized shape function representing the restriction of the basis function λ to the
element e is given by λ̂|e = λ ◦ Φe. Finite elements that form non-affine families [4]
may require additional transformations. This is the case for the following global bases
implementations.

• RaviartThomasBasis: The standard Raviart–Thomas basis [2] for problems in
H(div). Available for different orders and element types.

• BrezziDouglasMariniBasis: The standard Brezzi–Douglas–Marini basis, which
is an alternative basis for H(div)-conforming problems [2].

Both bases require the Piola transformation to properly pull back the basis func-
tions onto the reference element. This transformation is not performed by the dune-

functions implementation, and is expected to happen in user code. For a detailed
discussion of the template parameters and constructor arguments of the basis imple-
mentations listed above we refer to the online class documentation.

3.2 Combining bases into trees

The basis implementations of the previous section can be combined by multiplication
to form new bases. This produces the tree structures described in Section 1. The mul-
tiplication code resides in the BasisFactory namespace, which is a nested namespace
within Dune::Functions::. Therefore, the examples in this section need a

using namespace Dune::Functions::BasisFactory;

to compile.
The methods to combine bases into trees do not operate on the basis classes of the

previous section directly. Rather, they combine so-called pre-bases, of which there is
one for each basis. The reason for this is that it is technically challenging to combine
the actual user-visible basis types in a tree hierarchy that itself again implements the
interface of a hierarchical function space basis. Therefore, the multiplication operators
are applied to pre-basis objects, and return pre-basis objects of the resulting tree. The
pre-basis of the final basis tree can then be turned into an actual basis.

Since all pre-bases in the product pre-basis have to know some common information
like, e.g., the grid view, doing this hierarchic construction manually is verbose and error
prone. As a more user friendly and safer solution a global basis can be constructed by
a call to

template <class GridView, class PreBasis>

auto makeBasis(const GridView& gridView, PreBasis&& preBasis);

The pre-basis argument encodes the hierarchic product. The actual basis is constructed
automatically by the makeBasis function from the pre-bases in a consistent way. This

29

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

also determines a suitable multi-index type automatically, which otherwise would have
to be done by the user. 6

In the simple-most case, the basis tree consists of a single leaf. This leaf is then,
e.g., one of the basis implementations of the previous section. As a convention, for
each global basis FooBarBasis there is a function BasisFactory::fooBar() (defined
in the same header file as FooBarBasis), creating a suitable pre-basis object which
stores all basis-specific information. That means that in particular you can write

auto raviartThomasBasis = makeBasis(gridView, raviartThomas<k>());

to obtain a Raviart–Thomas basis for the given grid view. This call to makeBasis is
equivalent to constructing the basis directly:

RaviartThomasBasis<GridView,k> raviartThomasBasis(gridView);

Note that the raviartThomas function, just like the corresponding functions for other
bases, does not need the grid view as parameter.

If FooBarBasis has template and/or constructor parameters, then by convention
they are given in the same order as the template and method parameters of the
BasisFactory::fooBar() function. As the only difference, the former has the grid
view type and object prepended.

The pre-basis combining several bases in a product is called CompositePreBasis,
defined in the header dune/functions/functionspacebases/compositebasis.hh. It
implements a composite tree node as introduced in Definition 6. Analogously to the
above description, a pre-basis for a tree with a composite root can be constructed
using the global function

template <class... ChildPreBasis>

auto composite(ChildPreBasis&&... childPreBasis);

contained in the namespace BasisFactory. The method has an unspecified number
of arguments, of unspecified type. The arguments are expected to be pre-basis objects
themselves. They can either be plain pre-bases constructed by, e.g., lagrange<1>() or
raviartThomas<k>(), or composite- or power pre-bases constructed by the composite
or power function (see below), respectively.

As an example, to combine a Raviart–Thomas basis with a zero-order Lagrange
basis (let’s say for solving the mixed formulation of the Poisson equation [3]), the
appropriate call is

auto mixedBasis = makeBasis(

gridView,

composite(

raviartThomas<0>(),

6The interface description is in fact slightly simplified: The user-provided arguments of makeBasis
are not pre-bases themselves but pre-basis-factory objects that can construct the corresponding
pre-bases. This mechanism allows to delay passing the shared information (e.g. the grid view) to
the construction of the real pre-bases which is triggered by makeBasis. However, to simplify the
presentation we will ignore the technical difference of a pre-basis and its pre-basis-facory in the
following.

30

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

ΛRT t ΛP0

ΛRT ΛP0

ΛP1
t ΛP1

t ΛP1

ΛP1 ΛP1 ΛP1

Figure 8: Example composite bases

lagrange<0>()

));

Combining three copies of a first-order Lagrange basis for a displacement field in
elasticity theory is done by

auto displacementBasis = makeBasis(

gridView,

composite(

lagrange<1>(),

lagrange<1>(),

lagrange<1>()

));

The examples produce the trees shown in Figure 8.
The second example is not as elegant as it could be. First of all, it is inconvenient

and unnecessarily wordy to list the same scalar Lagrange basis three times. Secondly,
the required number may depend on a parameter. Finally, the implementation can
benefit from the explicit knowledge that all children are equal. For these reasons,
dune-functions offers a second way to combine bases: The PowerPreBasis to be
constructed by the factory method BasisFactory::power(). The interface is again a
single method

template<std::size_t k, class ChildPreBasis>

auto power(ChildPreBasis&& childPreBasis)

provided in the file dune/functions/functionspacebases/powerbasis.hh. It com-
bines k copies of a subtree of type ChildPreBasis in a new tree. Therefore, the
displacement vector field basis from above is more easily written as

auto displacementBasis = makeBasis(

gridView,

power<3>(

lagrange<1>()

));

Since composite and power create pre-bases themselves, all these techniques can be
combined. To obtain the p-th order Taylor–Hood basis, write

auto taylorHoodBasis = makeBasis(

31

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

gridView,

composite(

power<dim>(

lagrange<p+1>()),

lagrange<p>()

));

The call to power produces the dim-component Lagrange basis of order p+1 for the
velocity, and the call to composite combines this with a p-th order Lagrange basis for
the pressure. Note that this is the preferred way to construct a Taylor–Hood basis in
contrast to

auto taylorHoodBasis1 = makeBasis(gridView, taylorHood());

and

auto taylorHoodBasis2 = TaylorHoodBasis<GridView>(gridView);

These variants mainly exist as an implementation example.
The previous discussion has left out the question of how the degrees of freedom in

the combined tree are numbered. In Section 1.3 it was explained how the indices of the
degrees of freedom form a separate tree by their multi-index structure, and how this
tree is constructed from the basis tree by a set of strategies. These ideas are reflected
in the design of the dune-functions programmer interface. First of all, each of the
bases of Section 3.1 implements a numbering of its degrees of freedom, and generally
these numberings cannot be changed. To select a degree of freedom numbering for a
non-trivial basis, each call to composite or power can be augmented by an additional
flag indicating an IndexMergingStrategy. The four implemented strategies are

• BlockedLexicographic

• BlockedInterleaved

• FlatLexicographic

• FlatInterleaved

and have been described in Section 1.4. For each strategy FooBar there is a func-
tion BasisFactory::fooBar() creating the flag in the header functionspacebases/
basistags.hh. For example, a Taylor–Hood basis with the indexing listed in the
second column (labeled BL(BI)) of Table 1 can be created using

auto taylorHoodBasis = makeBasis(

gridView,

composite(

power<dim>(

lagrange<p+1>(),

blockedInterleaved()),

lagrange<p>(),

blockedLexicographic()

));

32

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

This will lead to multi-indices of length three and two for velocity and pressure degrees
of freedom, respectively. The same ordering of basis functions with a uniform indexing
scheme with multi-index length two (Column 4 labeled BL(FI) in Table 1) is obtained
by

auto taylorHoodBasis = makeBasis(

gridView,

composite(

power<dim>(

lagrange<p+1>(),

flatInterleaved()),

lagrange<p>(),

blockedLexicographic()

));

Finally, a flat indexing scheme still preserving the same ordering (Column 8 labeled
FL(FI) in Table 1) is obtained by

auto taylorHoodBasis = makeBasis(

gridView,

composite(

power<dim>(

lagrange<p+1>(),

flatInterleaved()),

lagrange<p>(),

flatLexicographic()

));

If no strategy is given, composite will use the BlockedLexicographic strategy, where-
as power will use BlockedInterleaved.

4 Treating subtrees as separate bases

The previous section has shown how trees of bases can be combined to form bigger
trees. It is also possible to extract subtrees from other trees and treat these subtrees
as basis trees in their own right. The programmer interface for such subtree bases is
called SubspaceBasis. It mostly coincides with the interface of a global basis, but
additionally to the GlobalBasis interface the SubspaceBasis provides information
about how the subtree is embedded into the global basis. More specifically, the method

const <implementation defined>& rootBasis() const

provides access to the root basis, and the method

using PrefixPath = TypeTree::HybridTreePath<implementation defined>;

const PrefixPath& prefixPath() const

returns the path of the subtree associated to the SubspaceBasis within the full tree.
For convenience a global basis behaves like a trivial SubspaceBasis, i.e., it has the
method rootBasis returning the basis itself, and prefixPath returning an empty

33

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

tree-path. Note that a SubspaceBasis differs from a full global basis because the
global multi-indices are the same as the ones of the root basis, and thus they are in
general neither consecutive nor zero-based. Instead, those multi-indices allow to access
containers storing coefficients for the full root basis.
SubspaceBasis objects are created using a global factory function from the root

basis and the path to the desired subtree. The path can either be passed as a single
HybridTreePath object (see Section 2.4), or as a sequence of individual indices.

template<class RootBasis, class... PathIndices>

auto subspaceBasis(const RootBasis& rootBasis,

const TypeTree::HybridTreePath<PathIndices...>& prefixPath);

template<class RootBasis, class... PathIndices>

auto subspaceBasis(const RootBasis& rootBasis, const PathIndices&... indices);

For example, suppose that taylorHoodBasis is any one of the implementations of the
Taylor–Hood basis defined in Section 3.2. Then

auto velocityBasis = subspaceBasis(taylorHoodBasis, _0);

will extract the subtree of velocity degrees of freedom, and

auto pressureBasis = subspaceBasis(taylorHoodBasis, _1);

will extract the (trivial) subtree of pressure degrees of freedom. The possibly non-
consecutive multi-indices of a SubspaceBasis are best illustrated by extracting a single
velocity component

auto velocityZBasis = subspaceBasis(taylorHoodBasis, _0, 2);

For this example the following table shows the multi-indices of the SubspaceBasis

extracted from the full basis, with columns representing the different index merging
strategies also used in Table 1:

BL(BL) BL(BI) BL(FL) BL(FI) FL(BL) FL(BI) FL(FL) FL(FI)
vx2,0 (0, 2, 0) (0, 0, 2) (0, 2n2 + 0) (0, 0 + 2) (2, 0) (0, 2) (2n2 + 0) (0 + 2)
vx2,1 (0, 2, 1) (0, 1, 2) (0, 2n2 + 1) (0, 3 + 2) (2, 1) (1, 2) (2n2 + 1) (3 + 2)
vx2,2 (0, 2, 2) (0, 2, 2) (0, 2n2 + 2) (0, 6 + 2) (2, 2) (2, 2) (2n2 + 2) (6 + 2)
vx2,3 (0, 2, 3) (0, 3, 2) (0, 2n2 + 3) (0, 9 + 2) (2, 3) (3, 2) (2n2 + 3) (9 + 2)

...
...

...
...

...
...

...
...

...

SubspaceBasis objects can be combined with coefficient vectors to represent vector-
and scalar-valued discrete functions. The interface for this construction is discussed
in the next section.

5 Combining global bases and coefficient vectors

Function space bases and coefficient vectors are combined to yield discrete functions,
by the linear combination shown exemplarily in (3). Such discrete functions can then,
e.g., be written to a file, or handed to some post-processing agent. Conversely, discrete

34

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

and non-discrete functions can be projected onto the span of a basis, which yields a cor-
responding coefficient vector. In dune-functions, this process is called interpolation,
although it is not always an interpolation in the strict sense of the word.

5.1 Vector backends

In both cases, individual basis functions need to be associated with corresponding
entries of a container data type that holds vector coefficients. While trivial in theory,
in practice there is a gap here because the multi-index types used by dune-functions

to label basis functions (Section 2.4.2) cannot be used to access entries of standard
random-access containers.

The gap is bridged by a concept called vector backends. These are shim classes that
abstract away implementation details of particular container classes, and make them
addressable by multi-indices. The dune-functions module currently offers such a
backend for containers from dune-istl and the C++ standard library, but others can
be added easily. This makes it possible to combine dune-functions function space
bases with basically any linear algebra implementation.

There are two parts to the vector backend concept: When interpreting a vector of
given coefficients with respect to a basis, access is only required in a non-mutable way.
In dune-functions this functionality is encoded in the ConstVectorBackend concept
which solely requires direct access by operator[] using the multi-indices provided by
the function space basis:

auto operator[](Basis::MultiIndex) const;

For interpolation of given functions a corresponding mutable access is needed as
well. Furthermore, it must be possible to resize the vector to match the index tree
generated by the basis. These two additional methods make up the VectorBackend

concept:

auto operator[](Basis::MultiIndex);

void resize(const Basis&);

Note that the argument of the resize member function is not a number, but the basis
itself. This is necessary because resizing nested containers requires information about
the whole index tree.

For the vector types implemented in the dune-istl and dune-common modules, such
a backend can be obtained using

template<class SomeDuneISTLVector>

auto istlVectorBackend(SomeDuneISTLVector& x);

template<class SomeDuneISTLVector>

auto istlVectorBackend(const SomeDuneISTLVector& x);

Depending on the const-ness of the argument, the resulting object implements the
VectorBackend or only the ConstVectorBackend interface. Even though these meth-

35

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

ods have the istl prefix in their names, they actually also work well for containers
from the C++ standard library like std::array and std::vector.

Since a non-trivial product function space basis corresponds to functions with a
non-scalar range, we additionally have to map the components of the spanned product
function space to components of a function range type. If, for example, the functions
from the power function space generated by the basis

auto basis = makeBasis(gridView, power<dim>(lagrange<1>()));

should be interpreted as vector fields, one would map the dim leaf nodes of this basis to
the dim entries of a FieldVector<double,dim>. Whenever combining bases and range
types dune-function uses a default mapping generalizing this idea to more complex
nested bases: Assume that y is an object of the function range type. Then a leaf node
with tree path i0, . . . , in is associated to the entry y[i0]. . . [in]. In the exceptional
case that the range type does not provide an operator[] it is directly used for all
leaf nodes in the ansatz space. This last rule allows to interpolate a scalar function
into all components of a basis at once. For additional flexibility, users can also provide
custom mappings to be used instead of this one. However, we will not discuss the
corresponding interface and rely on the implicitly used default implementation in the
following.

5.2 Interpreting coefficient vectors as finite element functions

To combine a basis and a coefficient vector to a discrete function that can be evaluated
point-wise in Ω, dune-functions provides the function

template<class Range, class B, class C>

auto makeDiscreteGlobalBasisFunction(const B& basis, const C& coefficients);

For given basis basis and coefficient vector coefficients this returns an object
representing the corresponding finite element function. This object implements the
GridViewFunction concept for the grid view the basis is defined on, described in [6]
with the range type Range. The basis can either be a global basis or a SubspaceBasis.
In the latter case the coefficient vector has to correspond to the full basis nevertheless,
but only the coefficients associated with the subspace basis functions will be used.

For the type C used to represent the coefficient vector there are two choices. Either
it implements the ConstVectorBackend concept, as for example all objects returned
by the istlVectorBackend method do. If C does not implement this concept, then
the code assumes that it is a dune-istl-style container and tries to wrap it with an
ISTLVectorBackend. That way, makeDiscreteGlobalBasisFunction can be called
with dune-istl or STL containers directly, but all others have to be wrapped in an
appropriate backend explicitly.

Notice that the range type can in general not be determined automatically from the
basis and coefficient type because there are multiple possible types to implement this.
For example a scalar function could return double or FieldVector<double,1>. Hence
the range type Range has to be given explicitly by the user. The mapping from the

36

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

different leaf nodes of the basis to the entries of Range follows the procedure described
in Section 5.1.

To give an example how makeDiscreteGlobalBasisFunction is used, we construct
yet another instance of the Taylor–Hood basis

auto taylorHoodBasis = makeBasis(

gridView,

composite(

power<dim>(

lagrange<p+1>()),

lagrange<p>()

));

By default, the merging strategies are BlockedLexicographic for the composite node,
and BlockedInterleaved for the power node. The resulting indices are the ones from
Column 2 of Table 1. An appropriate vector container type for this is

using Vectortype = TupleVector<

BlockVector<FieldVector<double,dim> >,

BlockVector<FieldVector<double,1> > >;

Let x be an object of this type. To obtain the corresponding velocity field as a discrete
function, write

// Create SubspaceBasis for the velocity field
auto velocityBasis = subspaceBasis(taylorHoodBasis, _0);

// Fix a range type for the velocity field
using VelocityRange = FieldVector<double,dim>;

// Create a function for the velocity field only
// but using the vector x for the full taylorHoodBasis.
auto velocityFunction

= makeDiscreteGlobalBasisFunction<VelocityRange>(velocityBasis, x);

Notice that the dim leaf nodes of the function space tree spanned by velocityBasis

are automatically mapped to the dim components of the VelocityRange type. The
resulting function created in the last line implements the full GridViewFunction in-
terface described in [6]. For example it can be directly passed to the VTKWriter class
of the dune-grid module to write the velocity field as a VTK vector field. See the
end of Section 6.3.1 for how this is done.

5.3 Interpolation

In various parts of a finite element or finite volume simulation code, given functions
need to be interpolated into spaces spanned by a global basis. For example, initial
iterates may be given in closed form, but need to be transferred to a finite element
representation to be usable. Similarly, Dirichlet values given in closed form may need
to be interpolated on the set of Dirichlet degrees of freedom. Depending on the finite
element space, interpolation may take different forms. Nodal interpolation is the

37

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

natural choice for Lagrange elements, but for other spaces L2-projections or Hermite-
type interpolation may be more appropriate.

The dune-functions module provides a set of methods for interpolation in the
file dune/functions/functionspacebases/interpolation.hh. These methods are
canonical in the sense that they use the LocalInterpolation functionality on each
element for the interpolation. This is appropriate for a lot, but not all finite element
spaces. For example, no reasonable local interpolation can be defined for B-spline
bases, and therefore the standard interpolation functionality cannot be used with the
BSplineBasis class. This approach also fails for non-affine finite elements, because
LocalInterpolation is not applying non-standard transformations to the reference
element.

The interpolation functionality is implemented in two global functions. The first
deals with the simple case of a given function and basis, where the function is to be
projected onto the span of the basis, yielding a coefficient vector describing the result.

template <class Basis, class C, class F>

void interpolate(const Basis& basis, C&& coefficients, const F& f);

Note that this will only work if the range type of f and the global basis basis are
compatible. dune-functions implements a compatibility layer that allows to use
different vector (or matrix) types from the dune core modules and scalar types like,
e.g. double for the range of f as long as the number of scalar entries of this range
type is the same as the dimension of the range space of the function space spanned by
the basis. This also implies the assumption that the coefficients for individual basis
functions are scalar. The type of the coefficient vector coefficients either has to
implement the VectorBackend concept or to be wrappable by the istlVectorBackend.
For example, consider the function

f1 : R2 → R f1 = exp(−‖x‖2)

implemented as

47 auto f1 = [](const FieldVector<double,2>& x)

48 {

49 return exp(-1.0*x.two_norm2());

50 };

Additionally, consider a scalar second-order Lagrange space

54 Functions::LagrangeBasis<GridView,2> p2basis(gridView);

and an empty coefficient vector x1, not necessarily of correct size:

58 std::vector<double> x1;

Then, the single line

62 interpolate(p2basis, x1, f1);

will fill x1 with the nodal values of the function f1.

38

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

This interpolation works equally well for non-trivial basis trees and subtrees obtained
by the subspaceBasis function, provided that the coefficient vector matches the basis
and that the function range can be mapped to the product space associated to the
basis. Suppose there is a Taylor–Hood basis for a two-dimensional grid that uses flat
multi-indices to label its degrees of freedom:

67 using namespace Functions::BasisBuilder;

68

69 auto taylorHoodBasis = makeBasis(

70 gridView,

71 composite(

72 power<dim>(

73 lagrange<2>(),

74 flatLexicographic()),

75 lagrange<1>(),

76 flatLexicographic()

77));

A suitable coefficient vector for such a basis is for example

81 BlockVector<FieldVector<double,1>> x2;

In this situation, interpolation of f1 into the pressure components of the Taylor–Hood
basis can be achieved by

86 using namespace Indices;

87 interpolate(subspaceBasis(taylorHoodBasis, _1), x2, f1);

Similarly we can interpolate a given vector field f2 into the non-trivial subtree repre-
senting the velocity using

91 auto f2 = [](const FieldVector<double,2>& x) {

92 return x;

93 };

94 interpolate(subspaceBasis(taylorHoodBasis, _0), x2, f2);

It is even possible to interpolate into the full taylorHoodBasis if the range type of
the provided function has the same nesting structure as the basis.

In some situations it is also desirable to interpolate only on a part of the domain.
Algebraically, the interpolation is then performed as before, but only a subset of all
coefficients are written. The most frequent use-case is the interpolation of Dirichlet
data onto the algebraic degrees of freedom on the Dirichlet boundary. All others
degrees of freedom must not be touched, as they contain, e.g., a suitable initial iterate
obtained by some other means.

To support this kind of interpolation, a variant of the interpolate method allows
to explicitly mark a subset of coefficient vector entries to be written.

template <class B, class C, class F, class BV>

void interpolate(const B& basis,

C&& coefficients,

const F& f,

const BV& bitVector);

39

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

Conceptually, the additional bitVector argument must be a container of booleans
having the same nesting structure as coefficients. Its entries are treated as boolean
values indicating if the corresponding entry of coefficients should be written. For
example, for flat global indices std::vector<bool> and std::vector<char> work
nicely. The class BitSetVector<N> (from the dune-common module) can be used as
a space-optimized alternative to std::vector<std::bitset<N>>. For example, to
interpolate the f2 function defined above only into the boundary velocity degrees of
freedom, first set up a suitable bit-vector:

98 BlockVector<FieldVector<char,1>> isBoundary;

99 auto isBoundaryBackend = Functions::istlVectorBackend(isBoundary);

100 isBoundaryBackend.resize(taylorHoodBasis);

101 isBoundary = false;

102 forEachBoundaryDOF(subspaceBasis(taylorHoodBasis, _0),

103 [&] (auto&& index) {

104 isBoundaryBackend[index] = true;

105 });

The actual interpolation is then a single line:

109 interpolate(subspaceBasis(taylorHoodBasis, _1), x2, f2, isBoundary);

See Chapter 6.3.1 for a more involved example. The forEachBoundaryDOF method
that loops over all boundary degrees of freedom is defined in the file dune/functions/
functionspacebases/boundarydofs.hh.

6 Example: Solving the Stokes equation with dune-functions

We close the paper by showing a complete example program that demonstrates a
lot of the techniques presented so far. The example program will solve the sta-
tionary Stokes problem using Taylor–Hood finite elements. The example is con-
tained in a single file, which comes as part of the dune-functions source tree, in
dune-functions/examples/stokes-taylorhood.cc. If you read this document in
electronic form, the file can also be accessed by clicking on the icon in the margin.

6.1 The Stokes equation

The Stokes equation models a viscous incompressible fluid in a d-dimensional do-
main Ω. There are two unknowns in this problem: a stationary fluid velocity field
u : Ω → Rd, and the fluid pressure p : Ω → R. Together, they have to solve the
boundary value problem

−∆u−∇p = 0 in Ω,

div u = 0 in Ω,

u = g on ∂Ω,

where we have omitted the physical parameters. The boundary value problem only
determines the pressure p up to a constant function. The pressure is therefore usually
normalized such that

∫
Ω
p dx = 0.

40

stokes-taylorhood.cc
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-

// vi: set et ts=4 sw=2 sts=2:

#include <config.h>

#include <array>

#include <vector>

#include <dune/common/function.hh>

#include <dune/common/bitsetvector.hh>

#include <dune/common/indices.hh>

#include <dune/geometry/quadraturerules.hh>

#include <dune/grid/yaspgrid.hh>

#include <dune/grid/io/file/vtk/subsamplingvtkwriter.hh>

#include <dune/istl/matrix.hh>

#include <dune/istl/bcrsmatrix.hh>

#include <dune/istl/matrixindexset.hh>

#include <dune/istl/solvers.hh>

#include <dune/istl/preconditioners.hh>

#include <dune/istl/multitypeblockmatrix.hh>

#include <dune/istl/multitypeblockvector.hh>

#include <dune/functions/functionspacebases/interpolate.hh>

#include <dune/functions/functionspacebases/taylorhoodbasis.hh>

#include <dune/functions/backends/istlvectorbackend.hh>

#include <dune/functions/functionspacebases/powerbasis.hh>

#include <dune/functions/functionspacebases/compositebasis.hh>

#include <dune/functions/functionspacebases/lagrangebasis.hh>

#include <dune/functions/functionspacebases/subspacebasis.hh>

#include <dune/functions/functionspacebases/boundarydofs.hh>

#include <dune/functions/gridfunctions/discreteglobalbasisfunction.hh>

#include <dune/functions/gridfunctions/gridviewfunction.hh>

#define BLOCKEDBASIS 1

// { using_namespace_dune_begin }

using namespace Dune;

// { using_namespace_dune_end }

// Compute the stiffness matrix for a single element

// { local_assembler_signature_begin }

template <class LocalView>

void getLocalMatrix(

 const LocalView& localView,

 Matrix<FieldMatrix<double,1,1>>& elementMatrix)

// { local_assembler_signature_end }

{

 // Get the grid element from the local FE basis view

 // { local_assembler_get_element_information_begin }

 using Element = typename LocalView::Element;

 const Element element = localView.element();

 const int dim = Element::dimension;

 auto geometry = element.geometry();

 // { local_assembler_get_element_information_end }

 // Set all matrix entries to zero

 // { initialize_element_matrix_begin }

 elementMatrix.setSize(localView.size(), localView.size());

 elementMatrix = 0; // fills the entire matrix with zeros

 // { initialize_element_matrix_end }

 // Get set of shape functions for this element

 // { get_local_fe_begin }

 using namespace Indices;

 const auto& velocityLocalFiniteElement /*@\label{li:stokes_taylorhood_get_velocity_lfe}@*/

 = localView.tree().child(_0,0).finiteElement();

 const auto& pressureLocalFiniteElement

 = localView.tree().child(_1).finiteElement(); /*@\label{li:stokes_taylorhood_get_pressure_lfe}@*/

 // { get_local_fe_end }

 // Get a quadrature rule

 // { begin_quad_loop_begin }

 int order = 2*(dim*velocityLocalFiniteElement.localBasis().order()-1);

 const auto& quad = QuadratureRules<double, dim>::rule(element.type(), order);

 // Loop over all quadrature points

 for (const auto& quadPoint : quad)

 {

 // { begin_quad_loop_end }

 // { quad_loop_preamble_begin }

 // The transposed inverse Jacobian of the map from the

 // reference element to the element

 const auto jacobianInverseTransposed

 = geometry.jacobianInverseTransposed(quadPoint.position());

 // The multiplicative factor in the integral transformation formula

 const auto integrationElement

 = geometry.integrationElement(quadPoint.position());

 // { quad_loop_preamble_end }

 ///

 // Velocity--velocity coupling

 ///

 // The gradients of the shape functions on the reference element

 // { velocity_gradients_begin }

 std::vector<FieldMatrix<double,1,dim> > referenceGradients;

 velocityLocalFiniteElement.localBasis().evaluateJacobian(

 quadPoint.position(),

 referenceGradients);

 // Compute the shape function gradients on the grid element

 std::vector<FieldVector<double,dim> > gradients(referenceGradients.size());

 for (size_t i=0; i<gradients.size(); i++)

 jacobianInverseTransposed.mv(referenceGradients[i][0], gradients[i]);

 // { velocity_gradients_end }

 // Compute the actual matrix entries

 // { velocity_velocity_coupling_begin }

 for (size_t i=0; i<velocityLocalFiniteElement.size(); i++)

 for (size_t j=0; j<velocityLocalFiniteElement.size(); j++)

 for (size_t k=0; k<dim; k++)

 {

 size_t row = localView.tree().child(_0,k).localIndex(i); /*@\label{li:stokes_taylorhood_compute_vv_element_matrix_row}@*/

 size_t col = localView.tree().child(_0,k).localIndex(j); /*@\label{li:stokes_taylorhood_compute_vv_element_matrix_column}@*/

 elementMatrix[row][col] += (gradients[i] * gradients[j])

 * quadPoint.weight() * integrationElement; /*@\label{li:stokes_taylorhood_update_vv_element_matrix}@*/

 }

 // { velocity_velocity_coupling_end }

 ///

 // Velocity--pressure coupling

 ///

 // The values of the pressure shape functions

 // { pressure_values_begin }

 std::vector<FieldVector<double,1> > pressureValues;

 pressureLocalFiniteElement.localBasis().evaluateFunction(

 quadPoint.position(),

 pressureValues);

 // { pressure_values_end }

 // Compute the actual matrix entries

 // { velocity_pressure_coupling_begin }

 for (size_t i=0; i<velocityLocalFiniteElement.size(); i++)

 for (size_t j=0; j<pressureLocalFiniteElement.size(); j++)

 for (size_t k=0; k<dim; k++)

 {

 size_t vIndex = localView.tree().child(_0,k).localIndex(i); /*@\label{li:stokes_taylorhood_compute_vp_element_matrix_row}@*/

 size_t pIndex = localView.tree().child(_1).localIndex(j); /*@\label{li:stokes_taylorhood_compute_vp_element_matrix_column}@*/

 elementMatrix[vIndex][pIndex] += /*@\label{li:stokes_taylorhood_update_vp_element_matrix_a}@*/

 gradients[i][k] * pressureValues[j]

 * quadPoint.weight() * integrationElement;

 elementMatrix[pIndex][vIndex] +=

 gradients[i][k] * pressureValues[j]

 * quadPoint.weight() * integrationElement; /*@\label{li:stokes_taylorhood_update_vp_element_matrix_b}@*/

 }

 // { velocity_pressure_coupling_end }

 }

}

// Set the occupation pattern of the stiffness matrix

template <class Basis, class MatrixType>

void setOccupationPattern(const Basis& basis, MatrixType& matrix)

{

 enum {dim = Basis::GridView::dimension};

 // MatrixIndexSets store the occupation pattern of a sparse matrix.

 // They are not particularly efficient, but simple to use.

 std::array<std::array<MatrixIndexSet, 2>, 2> nb;

 // Set sizes of the 2x2 submatrices

 for (size_t i=0; i<2; i++)

 for (size_t j=0; j<2; j++)

 nb[i][j].resize(basis.size({i}), basis.size({j}));

 // A view on the FE basis on a single element

 auto localView = basis.localView();

 // Loop over all leaf elements

 for(const auto& element : elements(basis.gridView()))

 {

 // Bind the local view to the current element

 localView.bind(element);

 // Add element stiffness matrix onto the global stiffness matrix

 for (size_t i=0; i<localView.size(); i++) {

 // Global index of the i-th local degree of freedom of the current element

 auto row = localView.index(i);

 for (size_t j=0; j<localView.size(); j++) {

 // Global index of the j-th local degree of freedom of the current element

 auto col = localView.index(j);

 nb[row[0]][col[0]].add(row[1],col[1]);

 }

 }

 }

 // Give the matrix the occupation pattern we want.

 using namespace Indices;

#if !BLOCKEDBASIS

 matrix.setSize(2,2);

#endif

 nb[0][0].exportIdx(matrix[_0][_0]);

 nb[0][1].exportIdx(matrix[_0][_1]);

 nb[1][0].exportIdx(matrix[_1][_0]);

 nb[1][1].exportIdx(matrix[_1][_1]);

}

#if BLOCKEDBASIS

// { matrixentry_begin }

template<class Matrix, class MultiIndex>

decltype(auto) matrixEntry(

 Matrix& matrix, const MultiIndex& row, const MultiIndex& col)

{

 using namespace Indices;

 if ((row[0]==0) and (col[0]==0))

 return matrix[_0][_0][row[1]][col[1]][row[2]][col[2]];

 if ((row[0]==0) and (col[0]==1))

 return matrix[_0][_1][row[1]][col[1]][row[2]][0];

 if ((row[0]==1) and (col[0]==0))

 return matrix[_1][_0][row[1]][col[1]][0][col[2]];

 return matrix[_1][_1][row[1]][col[1]][0][0]; /*@\label{li:matrixentry_pressure_pressure}@*/

}

// { matrixentry_end }

#else

template<class Matrix, class MultiIndex>

decltype(auto) matrixEntry(Matrix& matrix, const MultiIndex& row, const MultiIndex& col)

{

 return matrix[row[0]][col[0]][row[1]][col[1]];

 using namespace Functions::BasisFactory;

 static const std::size_t K = 1; // pressure order for Taylor-Hood

}

#endif

/** \brief Assemble the Laplace stiffness matrix on the given grid view */

// { global_assembler_signature_begin }

template <class Basis, class MatrixType>

void assembleStokesMatrix(const Basis& basis, MatrixType& matrix)

// { global_assembler_signature_end }

{

 // { setup_matrix_pattern_begin }

 // Set matrix size and occupation pattern

 setOccupationPattern(basis, matrix);

 // Set all entries to zero

 matrix = 0;

 // { setup_matrix_pattern_end }

 // A view on the FE basis on a single element

 // { get_localview_begin }

 auto localView = basis.localView();

 // { get_localview_end }

 // A loop over all elements of the grid

 // { element_loop_and_bind_begin }

 for (const auto& element : elements(basis.gridView()))

 {

 // Bind the local FE basis view to the current element

 localView.bind(element);

 // { element_loop_and_bind_end }

 // Now let's get the element stiffness matrix

 // A dense matrix is used for the element stiffness matrix

 // { setup_element_stiffness_begin }

 Matrix<FieldMatrix<double,1,1> > elementMatrix;

 getLocalMatrix(localView, elementMatrix);

 // { setup_element_stiffness_end }

 // Add element stiffness matrix onto the global stiffness matrix

 // { accumulate_global_matrix_begin }

 for (size_t i=0; i<elementMatrix.N(); i++)

 {

 // The global index of the i-th local degree of freedom of the element 'e'

 auto row = localView.index(i); /*@\label{li:stokes_taylorhood_get_global_row_index}@*/

 for (size_t j=0; j<elementMatrix.M(); j++)

 {

 // The global index of the j-th local degree of freedom of the element 'e'

 auto col = localView.index(j); /*@\label{li:stokes_taylorhood_get_global_column_index}@*/

 matrixEntry(matrix, row, col) += elementMatrix[i][j]; /*@\label{li:stokes_taylorhood_scatter_matrix_indices}@*/

 }

 }

 // { accumulate_global_matrix_end }

 }

}

// { main_begin }

int main (int argc, char *argv[]) try

{

 // Set up MPI, if available

 MPIHelper::instance(argc, argv);

 // { mpi_setup_end }

 ///////////////////////////////////

 // Generate the grid

 ///////////////////////////////////

 // { grid_setup_begin }

 const int dim = 2;

 using GridType = YaspGrid<dim>;

 FieldVector<double,dim> upperRight = {1, 1};

 std::array<int,dim> elements = {{4, 4}};

 GridType grid(upperRight,elements);

 using GridView = typename GridType::LeafGridView;

 GridView gridView = grid.leafGridView();

 // { grid_setup_end }

 ///

 // Choose a finite element space

 ///

#if BLOCKEDBASIS

 // { function_space_basis_begin }

 using namespace Functions::BasisFactory;

 constexpr std::size_t p = 1; // pressure order for Taylor-Hood

 auto taylorHoodBasis = makeBasis(

 gridView,

 composite(

 power<dim>(

 lagrange<p+1>(),

 blockedInterleaved()),

 lagrange<p>()

));

 // { function_space_basis_end }

#else

 using namespace Functions::BasisFactory;

 static const std::size_t p = 1; // pressure order for Taylor-Hood

 auto taylorHoodBasis = makeBasis(

 gridView,

 composite(

 power<dim>(

 lagrange<p+1>(),

 flatInterleaved()),

 lagrange<p>()

));

#endif

 ///

 // Stiffness matrix and right hand side vector

 ///

#if BLOCKEDBASIS

 // { linear_algebra_setup_begin }

 using VelocityVector = BlockVector<FieldVector<double,dim>>;

 using PressureVector = BlockVector<FieldVector<double,1>>;

 using VectorType = MultiTypeBlockVector<VelocityVector, PressureVector>;

 using Matrix00 = BCRSMatrix<FieldMatrix<double,dim,dim>>;

 using Matrix01 = BCRSMatrix<FieldMatrix<double,dim,1>>;

 using Matrix10 = BCRSMatrix<FieldMatrix<double,1,dim>>;

 using Matrix11 = BCRSMatrix<FieldMatrix<double,1,1>>; /*@\label{li:matrix_type_pressure_pressure}@*/

 using MatrixRow0 = MultiTypeBlockVector<Matrix00, Matrix01>;

 using MatrixRow1 = MultiTypeBlockVector<Matrix10, Matrix11>;

 using MatrixType = MultiTypeBlockMatrix<MatrixRow0,MatrixRow1>;

 // { linear_algebra_setup_end }

#else

 using VectorType = BlockVector<BlockVector<FieldVector<double,1> > >;

 using BitVectorType = BlockVector<BlockVector<FieldVector<char,1> > >;

 using MatrixType = Matrix<BCRSMatrix<FieldMatrix<double,1,1> > >;

#endif

 ///

 // Assemble the system

 ///

 // { rhs_assembly_begin }

 VectorType rhs;

 auto rhsBackend = Dune::Functions::istlVectorBackend(rhs);

 rhsBackend.resize(taylorHoodBasis);

 rhs = 0; /*@\label{li:stokes_taylorhood_set_rhs_to_zero}@*/

 // { rhs_assembly_end }

 // { matrix_assembly_begin }

 MatrixType stiffnessMatrix;

 assembleStokesMatrix(taylorHoodBasis, stiffnessMatrix); /*@\label{li:stokes_taylorhood_call_to_assemblestokesmatrix}@*/

 // { matrix_assembly_end }

 ///

 // Set Dirichlet values.

 // Only velocity components have Dirichlet boundary values

 ///

 // { initialize_boundary_dofs_vector_begin }

 using VelocityBitVector = BlockVector<FieldVector<char,dim>>;

 using PressureBitVector = BlockVector<FieldVector<char,1>>;

 using BitVectorType

 = MultiTypeBlockVector<VelocityBitVector, PressureBitVector>;

 BitVectorType isBoundary;

 auto isBoundaryBackend = Dune::Functions::istlVectorBackend(isBoundary);

 isBoundaryBackend.resize(taylorHoodBasis);

 isBoundary = false;

 // { initialize_boundary_dofs_vector_end }

 // { determine_boundary_dofs_begin }

 using namespace Indices;

 Functions::forEachBoundaryDOF(

 Functions::subspaceBasis(taylorHoodBasis, _0),

 [&] (auto&& index) {

 isBoundaryBackend[index] = true;

 });

 // { determine_boundary_dofs_end }

 // { interpolate_dirichlet_values_begin }

 using Coordinate = GridView::Codim<0> ::Geometry::GlobalCoordinate;

 using VelocityRange = FieldVector<double,dim>;

 auto&& velocityDirichletData = [](Coordinate x)

 {

 return VelocityRange{0.0, double(x[0] < 1e-8)};

 };

 Functions::interpolate(

 Functions::subspaceBasis(taylorHoodBasis, _0), rhs,

 velocityDirichletData,

 isBoundary);

 // { interpolate_dirichlet_values_end }

 //

 // Modify Dirichlet rows

 //

 // loop over the matrix rows

 // { set_dirichlet_matrix_begin }

 auto localView = taylorHoodBasis.localView();

 for(const auto& element : Dune::elements(taylorHoodBasis.gridView()))

 {

 localView.bind(element);

 for (size_t i=0; i<localView.size(); ++i)

 {

 auto row = localView.index(i);

 // If row corresponds to a boundary entry, modify

 // it to be an identity matrix row

 if (isBoundaryBackend[row])

 for (size_t j=0; j<localView.size(); ++j)

 {

 auto col = localView.index(j);

 matrixEntry(stiffnessMatrix, row, col) = (i==j) ? 1 : 0;

 }

 }

 }

 // { set_dirichlet_matrix_end }

 ////////////////////////////

 // Compute solution

 ////////////////////////////

 // { stokes_solve_begin }

 // Start from the rhs vector; that way the Dirichlet entries are already correct

 VectorType x = rhs;

 // Technicality: turn the matrix into a linear operator

 MatrixAdapter<MatrixType,VectorType,VectorType> stiffnessOperator(stiffnessMatrix);

 // Fancy (but only) way to not have a preconditioner at all

 Richardson<VectorType,VectorType> preconditioner(1.0);

 // Construct the actual iterative solver

 RestartedGMResSolver<VectorType> solver(

 stiffnessOperator, // operator to invert

 preconditioner, // preconditioner for interation

 1e-10, // desired residual reduction factor

 500, // number of iterations between restarts

 500, // maximum number of iterations

 2); // verbosity of the solver

 // Object storing some statistics about the solving process

 InverseOperatorResult statistics;

 // Solve!

 solver.apply(x, rhs, statistics);

 // { stokes_solve_end }

 //

 // Make a discrete function from the FE basis and the coefficient vector

 //

 // { make_result_functions_begin }

 using VelocityRange = FieldVector<double,dim>;

 using PressureRange = double;

 auto velocityFunction

 = Functions::makeDiscreteGlobalBasisFunction<VelocityRange>(

 Functions::subspaceBasis(taylorHoodBasis, _0), x);

 auto pressureFunction

 = Functions::makeDiscreteGlobalBasisFunction<PressureRange>(

 Functions::subspaceBasis(taylorHoodBasis, _1), x);

 // { make_result_functions_end }

 //

 // Write result to VTK file

 // We need to subsample, because VTK cannot natively display real second-order functions

 //

 // { vtk_output_begin }

 SubsamplingVTKWriter<GridView> vtkWriter(

 gridView,

 refinementLevels(2));

 vtkWriter.addVertexData(

 velocityFunction,

 VTK::FieldInfo("velocity", VTK::FieldInfo::Type::vector, dim));

 vtkWriter.addVertexData(

 pressureFunction,

 VTK::FieldInfo("pressure", VTK::FieldInfo::Type::scalar, 1));

 vtkWriter.write("stokes-taylorhood-result");

 // { vtk_output_end }

 }

// Error handling

 catch (Exception e) {

 std::cout << e << std::endl;

 }

The dune-functions team
Complete source code of the Stokes/Taylor-Hood example

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

Ω

Figure 9: Driven cavity. Left: domain and boundary conditions; right: simulation
result. The arrows show the normalized velocity.

Due to the constraint div u = 0, the corresponding weak form of the equation is a
saddle-point problem. Introduce the spaces

H1
g(Ω) :=

{
v ∈ H1(Ω,Rd) : tr v = g

}
,

L2,0(Ω) :=
{
q ∈ L2(Ω) :

∫
Ω

q dx = 0
}
,

and the bilinear forms

a(u,v) :=

∫
Ω

∇u∇v dx, and b(v, q) :=

∫
Ω

div v · q dx.

Then the weak form of the Stokes equation is: Find (u, p) ∈ H1
g(Ω) × L2,0(Ω) such

that

a(u,v) + b(v, p) = 0 for all v ∈ H1
0(Ω)

b(u, q) = 0 for all q ∈ L2,0(Ω).

If g is sufficiently smooth, this variational problem has a unique solution. The Taylor–
Hood element is the standard way to discretize this saddle point problem [3], and will
be used in the following implementation.

6.2 The driven-cavity benchmark

For our example we choose to simulate a two-dimensional driven-cavity. This is a
standard benchmark for the Stokes problem in the literature [13]. Let Ω be the unit
square [0, 1]2, and set the Dirichlet boundary conditions for the velocity u to

u(x) = g(x) =

{
(0, 1)T if x ∈ {0} × [0, 1]

(0, 0)T elsewhere on ∂Ω.

41

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

The interpretation of this is a fluid container that is closed on all but one side. While
the fluid remains motionless on the closed sides, an external agent drives a constant
upward motion on the left vertical side. The domain and boundary conditions are
depicted in Figure 9, left. The corresponding solution is shown on the right side of the
same figure. The velocity forms a vortex, while the pressure forms extrema in the two
left corners.

6.3 Implementation

The implementation consists of an assembler for the Stokes problem and a main

method. Both will be discussed in the following.

6.3.1 The main method

The main method sets up the algebraic Stokes problem, calls a linear solver, and writes
the result to a VTK file. It begins by setting up MPI and the grid. We choose to
discretize the domain using a structured 4×4 quadrilateral grid, which we get by using
the YaspGrid grid implementation from the dune-grid module. Note that there is
the line

40 using namespace Dune;

at the top of the file, so this namespace is imported completely. Additionally, every-
thing in the dune-functions module is contained in the namespace Functions. This
namespace is not imported; instead, the prefix Functions:: is always given explicitly.

299 int main (int argc, char *argv[]) try

300 {

301 // Set up MPI, if available
302 MPIHelper::instance(argc, argv);

310 const int dim = 2;

311 using GridType = YaspGrid<dim>;

312 FieldVector<double,dim> upperRight = {1, 1};

313 std::array<int,dim> elements = {{4, 4}};

314 GridType grid(upperRight,elements);

315

316 using GridView = typename GridType::LeafGridView;

317 GridView gridView = grid.leafGridView();

The gridView object is the non-hierarchical finite element grid that we will use for
the computation. On this grid view, we then set up the function space basis for the
Taylor–Hood element. This is as simple as

326 using namespace Functions::BasisFactory;

327

328 constexpr std::size_t p = 1; // pressure order for Taylor−Hood
329

330 auto taylorHoodBasis = makeBasis(

331 gridView,

42

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

332 composite(

333 power<dim>(

334 lagrange<p+1>(),

335 blockedInterleaved()),

336 lagrange<p>()

337));

This way of constructing a Taylor–Hood basis from instances of Lagrange bases has
been discussed in Section 3.2. The indexing strategies used here are BlockedInterleaved
for the velocity subtree and BlockedLexicographic (the default) for the root. This
results in the indexing scheme spelled out in Column 2 of Table 1.

Before being able to assemble the stiffness matrix of the Stokes system we need to
pick suitable data structures for the linear algebra. These data structures should have
a blocking structure that matches the multi-indices used by the Taylor–Hood basis we
just constructed. More concretely, the appropriate vector container will be a pair of
vectors, where the first one has entries in Rd for the velocity and the second one has
entries in R for the pressure degrees of freedom. Analogously, the matrix must consist
of 2 × 2 large sparse matrices where the (0, 0)-block has entries in Rd×d, the (0, 1)-
block has entries in Rd×1, the (1, 0)-block has entries in R1×d, and the (1, 1)-block has
entries in R (as on the right side of Figure 6). The following code sets up such vector
and matrix types for this. It uses the nesting machinery from dune-istl, but data
types from other linear algebra libraries could be used as well.

361 using VelocityVector = BlockVector<FieldVector<double,dim>>;

362 using PressureVector = BlockVector<FieldVector<double,1>>;

363 using VectorType = MultiTypeBlockVector<VelocityVector, PressureVector>;

364

365 using Matrix00 = BCRSMatrix<FieldMatrix<double,dim,dim>>;

366 using Matrix01 = BCRSMatrix<FieldMatrix<double,dim,1>>;

367 using Matrix10 = BCRSMatrix<FieldMatrix<double,1,dim>>;

368 using Matrix11 = BCRSMatrix<FieldMatrix<double,1,1>>;

369 using MatrixRow0 = MultiTypeBlockVector<Matrix00, Matrix01>;

370 using MatrixRow1 = MultiTypeBlockVector<Matrix10, Matrix11>;

371 using MatrixType = MultiTypeBlockMatrix<MatrixRow0,MatrixRow1>;

Note that VectorType and MatrixType are no classical containers, because the entries
have non-uniform types. Rather, they are constructed similarly to std::tuple from
the C++ standard library. However, it must be emphasized that the use of such
advanced data structures is by no means mandatory. As detailed in Sections 1.4
and 3.2 it is trivial to make the Taylor–Hood basis use flat global indices, which work
directly with standard container types like std::vector.

Now that we have chosen the C++ types for the matrix and vector data structures
we can actually assemble the system. Assembling the right-hand-side vector rhs is
easy, because, apart from the Dirichlet boundary data (which we will insert later), all
its entries are zero. An all-zero vector of the correct type and size is set up by the
following lines

384 VectorType rhs;

43

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

385

386 auto rhsBackend = Dune::Functions::istlVectorBackend(rhs);

387

388 rhsBackend.resize(taylorHoodBasis);

389 rhs = 0;

The object returned by istlVectorBackend connects the dune-functions basis with
dune-istl linear algebra containers. In particular, it offers convenient resizing of an
entire hierarchy of nested vectors from given function space basis trees. Line 389 fills
the entire vector with zeros in one go, but observe that this is actually a dune-istl

feature.
To obtain the stiffness matrix we first create an empty matrix object of the correct

type. The actual assembly is factored out into a separate method.

393 MatrixType stiffnessMatrix;

394 assembleStokesMatrix(taylorHoodBasis, stiffnessMatrix);

As the matrix assembly is a central part of this example we explain it in detail below,
after having covered the main method.

Suppose now that we have the correct stiffness matrix assembled in the object
stiffnessMatrix. We still need to modify the linear system to include the Dirichlet
boundary information. In a first step we need to determine all degrees of freedom
with Dirichlet boundary conditions. To store this information we use a vector of
flags which has the same structure as VectorType and is again initialized using the
ISTLVectorBackend.

403 using VelocityBitVector = BlockVector<FieldVector<char,dim>>;

404 using PressureBitVector = BlockVector<FieldVector<char,1>>;

405 using BitVectorType

406 = MultiTypeBlockVector<VelocityBitVector, PressureBitVector>;

407

408 BitVectorType isBoundary;

409

410 auto isBoundaryBackend = Dune::Functions::istlVectorBackend(isBoundary);

411 isBoundaryBackend.resize(taylorHoodBasis);

412 isBoundary = false;

We now want to mark all the velocity degrees of freedom on the Dirichlet boundary. In
the driven-cavity example, the entire boundary is Dirichlet boundary. For convenience,
dune-functions provides the method

template<class Basis, class F>

void forEachBoundaryDOF(const Basis& basis, F&& f);

(in the file dune/functions/functionspacebases/boundarydofs.hh), which imple-
ments a loop over all degrees of freedom associated to entities located on the domain
boundary. The algorithm will invoke the callback function f for each such degree of
freedom, passing its global index as the callback argument. To mark the boundary
degrees of freedom for the velocity subtree write:

44

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

416 using namespace Indices;

417 Functions::forEachBoundaryDOF(

418 Functions::subspaceBasis(taylorHoodBasis, _0),

419 [&] (auto&& index) {

420 isBoundaryBackend[index] = true;

421 });

The forEachBoundaryDOF algorithm only considers velocity degrees of freedom be-
cause we called it with the corresponding subspace basis. Nevertheless, the global in-
dices handed out by forEachBoundaryDOF correspond to the full tree, and can therefore
by used to access the isBoundary container via the ISTLVectorBackend (Section 4).

Now that we have determined the set of Dirichlet degrees of freedom, we define a
method implementing the actual Dirichlet values function g, and interpolate that into
the right-hand-side vector rhs.

425 using Coordinate = GridView::Codim<0> ::Geometry::GlobalCoordinate;

426 using VelocityRange = FieldVector<double,dim>;

427 auto&& velocityDirichletData = [](Coordinate x)

428 {

429 return VelocityRange{0.0, double(x[0] < 1e-8)};

430 };

431

432 Functions::interpolate(

433 Functions::subspaceBasis(taylorHoodBasis, _0), rhs,

434 velocityDirichletData,

435 isBoundary);

Observe how the dune-functions interface allows to interpolate C++11 lambdas,
which makes the code very short and readable. Again the operation is constrained to
the velocity degrees of freedom by passing the corresponding subspace basis only. The
isBoundary vector given as the last argument restricts the interpolation to only the
boundary degrees of freedom which we marked before.

The stiffness matrix is modified in a more manual fashion. For each Dirichlet degree
of freedom we need to fill the corresponding matrix row with zeros, and write a 1 on
the diagonal. The following algorithm does this by looping over all grid elements, and
for each element looping over all Dirichlet degrees of freedom. This is less efficient
than simply looping over all matrix rows, but it allows to avoid implementing iterators
for the nested sparse matrix data types.

444 auto localView = taylorHoodBasis.localView();

445 for(const auto& element : Dune::elements(taylorHoodBasis.gridView()))

446 {

447 localView.bind(element);

448 for (size_t i=0; i<localView.size(); ++i)

449 {

450 auto row = localView.index(i);

451 // If row corresponds to a boundary entry, modify
452 // it to be an identity matrix row
453 if (isBoundaryBackend[row])

45

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

454 for (size_t j=0; j<localView.size(); ++j)

455 {

456 auto col = localView.index(j);

457 matrixEntry(stiffnessMatrix, row, col) = (i==j) ? 1 : 0;

458 }

459 }

460 }

Access to the matrix entries needs a matrix analogue to the vector backends—a trans-
lation layer that converts multi-indices to the correct sequence of instructions required
to access the matrix data structure. Such a backend is more challenging to write, as
it requires handling row and column indices at the same time. At the time of writing
dune-functions does not provide matrix backends. Instead, the example code uses a
small helper method matrixEntry that is defined in the example file itself. It is much
simpler than a generic matrix backend, because it is written directly for the matrix
data type of the Stokes problem.

217 template<class Matrix, class MultiIndex>

218 decltype(auto) matrixEntry(

219 Matrix& matrix, const MultiIndex& row, const MultiIndex& col)

220 {

221 using namespace Indices;

222 if ((row[0]==0) and (col[0]==0))

223 return matrix[_0][_0][row[1]][col[1]][row[2]][col[2]];

224 if ((row[0]==0) and (col[0]==1))

225 return matrix[_0][_1][row[1]][col[1]][row[2]][0];

226 if ((row[0]==1) and (col[0]==0))

227 return matrix[_1][_0][row[1]][col[1]][0][col[2]];

228 return matrix[_1][_1][row[1]][col[1]][0][0];

229 }

Notice that the outer indices for the MultiTypeBlockMatrix have to be encoded stat-
ically, because different matrix entries have different types. The additional [0][0] in
Line 228 is necessary because the entries of the lower-right matrix diagonal block are
of type FieldMatrix<double,1,1> (see Line 368), and the [0][0] is needed to get
the double from that. Similarly the entries of the (0, 1)- and (1, 0)-blocks of the ma-
trix are interpreted as single-column and single-row matrices, respectively, such that
corresponding [0] indices have to be inserted.

Finally, we can solve the linear system. Dedicated Stokes solvers frequently operate
on some sort of Schur complement, and hence they need direct access to the submatri-
ces [8]. This can be elegantly done using the nested matrix type used in this example.
However, efficiently solving the Stokes system is an art, which we do not want to get
into here. Instead, we use a GMRes solver, without any preconditioner at all. This
is known to converge, albeit slowly. The advantage is that it can be written down in
very few lines. The following code shows a typical way of using dune-istl to solve a
linear system of equations, and is not particular to dune-functions at all.

467 // Start from the rhs vector ; that way the Dirichlet entries are already correct
468 VectorType x = rhs;

46

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

469

470 // Technicality : turn the matrix into a linear operator
471 MatrixAdapter<MatrixType,VectorType,VectorType> stiffnessOperator(stiffnessMatrix);

472

473 // Fancy (but only) way to not have a preconditioner at all
474 Richardson<VectorType,VectorType> preconditioner(1.0);

475

476 // Construct the actual iterative solver
477 RestartedGMResSolver<VectorType> solver(

478 stiffnessOperator, // operator to invert
479 preconditioner, // preconditioner for interation
480 1e-10, // desired residual reduction factor
481 500, // number of iterations between restarts
482 500, // maximum number of iterations
483 2); // verbosity of the solver
484

485 // Object storing some statistics about the solving process
486 InverseOperatorResult statistics;

487

488 // Solve!
489 solver.apply(x, rhs, statistics);

Observe how the RestartedGMResSolver object is completely oblivious to the fact
that the matrix has a nesting structure.

Once the iterative solver has terminated, the result is written to a VTK file. How-
ever, as the VTKWriter class from the dune-grid module expects discrete functions
rather than coefficient vectors, we construct velocity and pressure discrete functions
by combining the appropriate coefficient vectors and basis subtrees:

497 using VelocityRange = FieldVector<double,dim>;

498 using PressureRange = double;

499

500 auto velocityFunction

501 = Functions::makeDiscreteGlobalBasisFunction<VelocityRange>(

502 Functions::subspaceBasis(taylorHoodBasis, _0), x);

503 auto pressureFunction

504 = Functions::makeDiscreteGlobalBasisFunction<PressureRange>(

505 Functions::subspaceBasis(taylorHoodBasis, _1), x);

Then, we write the resulting velocity as a vector field, and the resulting pressure as a
scalar field. We subsample the grid twice, because the VTKWriter class natively only
displays piecewise linear functions.

513 SubsamplingVTKWriter<GridView> vtkWriter(

514 gridView,

515 refinementLevels(2));

516 vtkWriter.addVertexData(

517 velocityFunction,

518 VTK::FieldInfo("velocity", VTK::FieldInfo::Type::vector, dim));

519 vtkWriter.addVertexData(

47

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

520 pressureFunction,

521 VTK::FieldInfo("pressure", VTK::FieldInfo::Type::scalar, 1));

522 vtkWriter.write("stokes-taylorhood-result");

When run, this program produces a file called stokes-taylorhood-result.vtu. The
file can be opened in ParaView, and the outcome looks like the image on the right
in Figure 9.

6.3.2 The global assembler

Now that we have covered the main method, we can turn to the assembler for the
Stokes stiffness matrix. We begin with the global assembler, which is implemented
in the method assembleStokesMatrix called in Line 394 of the main method. The
global assembler sets up the matrix pattern, loops over all elements, and accumulates
the element stiffness matrices in the global matrix. The signature of the method is

245 template <class Basis, class MatrixType>

246 void assembleStokesMatrix(const Basis& basis, MatrixType& matrix)

The only arguments it gets are the finite element basis and the matrix to fill. Observe
that the Taylor–Hood basis is not hard-wired here, so we could call the method with
a different basis. However, not surprisingly the local assembler for the Stokes problem
makes relatively tight assumptions on the basis tree structure, so there is relatively
little practical freedom here. Ideally, a global assembler should be fully generic, and
all knowledge about the current spaces and differential operators should be confined
to the local assembler. Real discretization frameworks like dune-pdelab do achieve
this separation, but for our example here we are less strict, to avoid technicalities.

The first few lines of the assembleStokesMatrix method set up the matrix occu-
pation pattern, and initialize all matrix entries with zero.

250 // Set matrix size and occupation pattern
251 setOccupationPattern(basis, matrix);

252

253 // Set all entries to zero
254 matrix = 0;

The method setOccupationPattern that constructs the matrix pattern is included
in the example file itself. It is easy to understand for everyone who understands the
rest of the assembly code, and we therefore omit a detailed description.

Next comes the actual element loop. We first request a localView object from the
finite element basis:

259 auto localView = basis.localView();

After that starts the loop over the grid elements. For each element, we bind the
localView object to the element. From now on all enquiries to the local view will
implicitly refer to this element.

264 for (const auto& element : elements(basis.gridView()))

265 {

48

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

266 // Bind the local FE basis view to the current element
267 localView.bind(element);

We then create the element stiffness matrix, and call the separate method getLocalMatrix

to fill it. For simplicity the code uses a dense matrix type even though it is known
a priori that the stationary Stokes matrix does not contain entries in the pressure
diagonal block. As local shape function indices are flat, a matrix data type without
nesting is used for the element stiffness matrix:

273 Matrix<FieldMatrix<double,1,1> > elementMatrix;

274 getLocalMatrix(localView, elementMatrix);

The getLocalMatrix method is discussed in detail below. It gets only the localView

object in addition to the elementMatrix. The former object contains all necessary
information. After the call to getLocalMatrix the elementMatrix object contains
the element stiffness matrix for the current element. The code loops over the entries
of the element stiffness matrix and adds them onto the global matrix.

279 for (size_t i=0; i<elementMatrix.N(); i++)

280 {

281 // The global index of the i−th local degree of freedom of the element ’e’
282 auto row = localView.index(i);

283

284 for (size_t j=0; j<elementMatrix.M(); j++)

285 {

286 // The global index of the j−th local degree of freedom of the element ’e’
287 auto col = localView.index(j);

288 matrixEntry(matrix, row, col) += elementMatrix[i][j];

289 }

290 }

The type returned in Lines 282 and 287 for the global row and column indices is a
multi-index. It has length 3 for velocity degrees of freedom and length 2 for pressure
degrees of freedom. Line 288 uses the helper function matrixEntry again to access
the nested global stiffness matrix using those multi-indices.

The preceding loops write into all four of the matrix blocks, even though it is known
that for the Stokes system the lower right block contains only zeros. A more optimized
version of the code would leave out the lower right submatrix altogether.

6.3.3 The local assembler

It remains to investigate the method that assembles the element stiffness matrices. Its
signature is

45 template <class LocalView>

46 void getLocalMatrix(

47 const LocalView& localView,

48 Matrix<FieldMatrix<double,1,1>>& elementMatrix)

It only receives the local view of the Taylor–Hood basis, expected to be bound to
an element, and the empty element matrix. There is no explicit requirement that

49

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

the LocalView object be a local view of a Taylor–Hood basis, but the assumption
is made implicitly in various parts of the local assembler. The first few lines of the
getLocalMatrix method gather some information about the element the method is to
work on. In particular, from the localView object it extracts the element itself, and
the element’s dimension and geometry

53 using Element = typename LocalView::Element;

54 const Element element = localView.element();

55

56 const int dim = Element::dimension;

57 auto geometry = element.geometry();

Next, the element stiffness matrix is initialized. The localView object knows the total
number of degrees of freedom of the element it is bound to, and since the matrix has
only scalar entries this is the correct number of matrix rows and columns:

62 elementMatrix.setSize(localView.size(), localView.size());

63 elementMatrix = 0; // fills the entire matrix with zeros

Finally, we ask for the set of velocity and pressure shape functions:

68 using namespace Indices;

69 const auto& velocityLocalFiniteElement

70 = localView.tree().child(_0,0).finiteElement();

71 const auto& pressureLocalFiniteElement

72 = localView.tree().child(_1).finiteElement();

The two objects returned in Lines 69–72 are LocalFiniteElements in the dune-

localfunctions sense of the word. These lines also show the tree structure of the
Taylor–Hood basis in action: The expression

localView.tree().child(_0,0)

returns the first child of the first child of the root, i.e., the basis for the first component
of the velocity field, and

localView.tree().child(_1)

is the basis for the pressure space. As the root of the tree combines two different bases,
the static identifiers _0 and _1 from the Dune::TypeTree::Indices namespace are
needed to specify its children. The inner node for the velocities combines d times the
same basis, and hence the normal integer 0 can be used to address its first child. This
particular implementation of the local Stokes assembler is actually “cheating”, because
it exploits the knowledge that the same basis is used for all velocity components.
Therefore, only the first leaf of the velocity subtree is acquired in Line 69, and then
used for all components. Using separate local finite elements is wasteful because the
same shape function values and gradients would be computed multiple times.

Next, the code constructs a suitable quadrature rule and loops over the quadrature
points. The formula for the quadrature order combines information about the element
type, the shape functions, and the differential operator. It computes the lowest order
that will integrate the weak form of the Stokes equation exactly on a cube grid.

50

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

77 int order = 2*(dim*velocityLocalFiniteElement.localBasis().order()-1);

78 const auto& quad = QuadratureRules<double, dim>::rule(element.type(), order);

79

80 // Loop over all quadrature points
81 for (const auto& quadPoint : quad)

82 {

The quadrature loop starts like similar local assembler codes seen elsewhere. First, we
get the inverse transposed Jacobian of the map from the reference element to the grid
element, and the Jacobian determinant for the integral transformation formula:

85 // The transposed inverse Jacobian of the map from the
86 // reference element to the element
87 const auto jacobianInverseTransposed

88 = geometry.jacobianInverseTransposed(quadPoint.position());

89

90 // The multiplicative factor in the integral transformation formula
91 const auto integrationElement

92 = geometry.integrationElement(quadPoint.position());

With these preparations done, we can assemble the first part of the stiffness matrix,
corresponding to the velocity–velocity coupling. For two d-valued velocity basis func-
tions ϕki = ekϕi and ϕlj = elϕj we need to compute

ae(ϕ
k
i ,ϕ

l
j) :=

∫
e

∇ϕki∇ϕlj dx = δkl

∫
e

∇ϕi∇ϕj dx

on the current element e, where ϕi and ϕj are the corresponding scalar basis func-
tions. The code first computes the derivatives of the velocity shape functions at the
current quadrature point, and then uses the matrix in jacobianInverseTransposed

to transform the shape functions gradients to gradients of the actual basis functions
defined on the grid element.

101 std::vector<FieldMatrix<double,1,dim> > referenceGradients;

102 velocityLocalFiniteElement.localBasis().evaluateJacobian(

103 quadPoint.position(),

104 referenceGradients);

105

106 // Compute the shape function gradients on the grid element
107 std::vector<FieldVector<double,dim> > gradients(referenceGradients.size());

108 for (size_t i=0; i<gradients.size(); i++)

109 jacobianInverseTransposed.mv(referenceGradients[i][0], gradients[i]);

With the velocity basis function gradients at hand we can assemble the velocity con-
tribution to the stiffness matrix:

114 for (size_t i=0; i<velocityLocalFiniteElement.size(); i++)

115 for (size_t j=0; j<velocityLocalFiniteElement.size(); j++)

116 for (size_t k=0; k<dim; k++)

117 {

118 size_t row = localView.tree().child(_0,k).localIndex(i);

51

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

119 size_t col = localView.tree().child(_0,k).localIndex(j);

120 elementMatrix[row][col] += (gradients[i] * gradients[j])

121 * quadPoint.weight() * integrationElement;

122 }

Noteworthy here are the Lines 118–119 which, for two given shape functions from the
finite element basis tree, obtain the flat numbering used to index the element stiffness
matrix. The expression child(_0,k) singles out the tree leaf for the k-th component
of the velocity basis. The loop variables i and j run over the shape functions in this
set, and

localView.tree().child(_0,k).localIndex(i);

returns the corresponding scalar index for this shape function in the set of all shape
functions of the Taylor–Hood basis on this element. This is the local index ιlocal

Λ|e (·) of

Section 1.5. Line 121 then updates the corresponding (scalar) element matrix entry
with the correctly weighted product of the two gradients ∇ϕi and ∇ϕj .

Once this part is understood, computing the velocity–pressure coupling terms is
easy. For a given velocity shape function ϕki and pressure shape function θj we need
to compute

be(ϕ
k
i , θj) :=

∫
e

divϕki ·θj dx =

∫
e

d∑
l=1

∂(ϕki)l
∂xl

·θj dx =

∫
e

∂ϕi
∂xk
·θj dx =

∫
e

(∇ϕi)k ·θj dx.

At this point in the code the value of ∇ϕi at the current quadrature point has been
computed already, but value of θi is still unknown. The values for all i are evaluated
by the following two lines:

131 std::vector<FieldVector<double,1> > pressureValues;

132 pressureLocalFiniteElement.localBasis().evaluateFunction(

133 quadPoint.position(),

134 pressureValues);

Then, the actual matrix assembly of the bilinear form be(·, ·) is

139 for (size_t i=0; i<velocityLocalFiniteElement.size(); i++)

140 for (size_t j=0; j<pressureLocalFiniteElement.size(); j++)

141 for (size_t k=0; k<dim; k++)

142 {

143 size_t vIndex = localView.tree().child(_0,k).localIndex(i);

144 size_t pIndex = localView.tree().child(_1).localIndex(j);

145

146 elementMatrix[vIndex][pIndex] +=

147 gradients[i][k] * pressureValues[j]

148 * quadPoint.weight() * integrationElement;

149 elementMatrix[pIndex][vIndex] +=

150 gradients[i][k] * pressureValues[j]

151 * quadPoint.weight() * integrationElement;

152 }

52

C. Engwer, C. Gräser, S. Müthing, O. Sander Bases in dune-functions

Line 143 computes the flat local index of ϕki again, and Line 144 computes the index
for θj (remember that _1 denotes the pressure basis). Finally, Lines 146–151 then
compute the integrand value (∇ϕi)k · θj , and add the resulting terms to the matrix.
This concludes the implementation of the local assembler for the Stokes problem.

References

[1] Randolph E. Bank. Hierarchical bases and the finite element method. Acta
Numerica, 5:1–43, 1996. doi: 10.1017/S0962492900002610.

[2] Daniele Boffi, Franco Brezzi, and Michel Fortin. Mixed Finite Element Methods
and Applications. Springer, 2013.

[3] Dietrich Braess. Finite Elemente. Springer, 2013.

[4] Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems. North-
Holland, 1978.

[5] J. Austin Cottrell, Thomas J. R. Hughes, and Yuri Bazilevs. Isogeometric Anal-
ysis. Wiley, 2009.

[6] Christian Engwer, Carsten Gräser, Steffen Müthing, and Oliver Sander. The in-
terface for functions in the dune-functions module. Archive of Numerical Software,
5(1):95–105, 2017. doi: 10.11588/ans.2017.1.27683.

[7] Jan S. Hesthaven and Tim Warburton. Nodal Discontinuous Galerkin Methods.
Springer, 2008.

[8] Volker John. Finite Element Methods for Incompressible Flow Problems. Springer,
2016.

[9] Andrew Koenig and Barbara E. Moo. Templates and duck typing. Dr. Dobb’s,
2005. URL www.drdobbs.com/templates-and-duck-typing/184401971. online.

[10] Nicolas Moës, John Dolbow, and Ted Belytschko. A finite element method for
crack growth without remeshing. International Journal for Numerical Methods
in Engineering, 46(1):131–150, 1999.

[11] Steffen Müthing. A Flexible Framework for Multi Physics and Multi Domain PDE
Simulations. PhD thesis, Universität Stuttgart, 2015.

[12] Rolf Rannacher and Stefan Turek. Simple nonconforming quadrilateral Stokes
element. Numerical Methods for Partial Differential Equations, 8:97–111, 1992.

[13] Rob Schreiber and Herbert B. Keller. Driven cavity flows by efficient numerical
techniques. Journal of Computational Physics, 49(2):310–333, 1983.

53

www.drdobbs.com/templates-and-duck-typing/184401971

	1 Function space bases
	1.1 Trees of function spaces
	1.2 Trees of function space bases
	1.3 Indexing basis functions by multi-indices
	1.4 Strategy-based construction of multi-indices
	1.5 Localization to single grid elements

	2 Programmer interface for function space bases
	2.1 The interface for a global function space basis
	2.2 The user interface for a localized basis
	2.3 The user interface of the tree of local bases
	2.4 Multi-indices

	3 Constructing trees of function space bases
	3.1 Basis implementations provided by dune-functions
	3.2 Combining bases into trees

	4 Treating subtrees as separate bases
	5 Combining global bases and coefficient vectors
	5.1 Vector backends
	5.2 Interpreting coefficient vectors as finite element functions
	5.3 Interpolation

	6 Example: Solving the Stokes equation with dune-functions
	6.1 The Stokes equation
	6.2 The driven-cavity benchmark
	6.3 Implementation

	References

