1,050 research outputs found

    MMIC amplifier based receivers for Earth remote sensing

    Get PDF
    We have developed amplifier based receivers using Indium Phosphide high electron mobility transistor (HEMT) monolithic microwave integrated circuit (MMIC) technology. These compact receivers are designed with atmospheric temperature and humidity sounding requirements in mind, operating at 100-125 GHz around the 118 GHz oxygen line, and at 160-185GHz near the 183 GHz water line, with average noise temperatures of 1600 and 1200K respectively. They are intended for applications where small volume and power consumption are critical. We will present laboratory data on the noise temperature of these receivers operated at room temperature and preliminary field data

    Efficiency in Steel Melting: Ladle Development

    Get PDF
    Effective ladle design and use is important for steel casting production. In foundry operations, the ladle temperature of the liquid steel is typically 150 to 250°F above the steel\u27s melting point to compensate for the heat losses in small ladles and the associated high cooling rates from the large surface area to volume ratios. Higher superheat is also necessary to provide sufficient steel fluidity to properly fill the mold cavity. In spite of the relatively short time that the steel is in contact with the ladle lining, the huge thermal gradients in the lining drive high values of heat flow through the refractory surface. Heat transfer between the melt and the ladle lining as well as the associated heat losses in foundry linings are analyzed in this paper. Initial information was taken from a survey of steel foundries and from industrial measurements at seven foundries. Temperature measurements were done with thermocouples and infrared cameras. Fluent software was used for modeling unsteady heat transfer in ladles. The influence of the thermal properties of different ceramic materials typically used for steel ladle linings on heat losses during use was analyzed. A novel class of ladle linings being developed at UMR based on porous ceramics has the potential of significantly decreasing the heat losses during use in addition to saving considerable ladle preheat energy. This paper reviews progress in developing and testing these linings

    Interactions between Dry Vibratable Tundish Linings and Steel Melts

    Get PDF
    Interactions between two tundish working linings and molten steel were investigated using industrial samples and laboratory testing. Periclase-based dry vibe linings from two production facilities were sampled and examined after casting: one containing 30 wt.% olivine and one without olivine. Cathodoluminescence imaging, secondary electron microscopy, energydispersive spectroscopy and x-ray diffraction analysis were performed to characterize the interactions. An experiment was developed to replicate the conditions found in a production tundish on the laboratory scale. Results comparing interactions observed in laboratory lining tests and commercial lining samples for the two lining materials are presented and discussed

    Improving Melting Efficiency through the Application of New Refractory Materials

    Get PDF
    Ladle design and ladle practices have a significant effect on a foundry operation and product quality. Large steel temperature losses or instabilities in the pouring temperature are frequently compensated by tapping at higher temperatures dramatically increasing furnace and ladle lining wear, oxidation of the steel, alloying element losses, and energy consumption in steel melting. Ladle lining materials need to satisfy a complex array of often conflicting requirements. For example, ceramic materials for linings must possess a high strength at liquid steel temperatures to prevent erosion and crack formation. However, linings need to also have a low thermal conductivity which typically increases as the strength improves. Temperature problems became more severe with decreasing ladle size. This paper summarizes test work of new lining materials in a 100 lb liquid metal capacity ladle in the UMR foundry designed with a temperature measurement system installed in the lining. Several different working linings materials were tested under similar conditions. Results from these foundry experiments were compared with thermal conductivity measurements in the laboratory and computation fluid dynamic modeling results. From this work, UMR\u27s newly developed porous alumina linings were shown to have properties that could result in significantly lowering energy requirements in steel foundries

    In Situ and Real-Time Mold Flux Analysis using a High-Temperature Fiber-Optic Raman Sensor for Steel Manufacturing Applications

    Get PDF
    Continuous Casting in Steel Production Uses Specially Developed Oxyfluoride Glasses (Mold Fluxes) to Lubricate a Mold and Control the Solidification of the Steel in the Mold. the Composition of the Flux Impacts Properties, Including Basicity, Viscosity, and Crystallization Rate, All of Which Affect the Stability of the Casting Process and the Quality of the Solidified Steel. However, Mold Fluxes Interact with Steel during the Casting Process, Resulting in Flux Chemistry Changes that Must Be Considered in the Flux Design. Currently, the Chemical Composition of Mold Flux Must Be Determined by Extracting Flux Samples from the Mold during Casting and Then Processing These Samples Offline to Estimate the Working Chemical Composition And, Therefore, the Expected Properties of the Flux. Raman Spectroscopy Offers an Alternative Method for Performing Flux Analysis with the Potential to Perform Measurements Online during the Casting Process. Raman Spectroscopy Uniquely Identifies Specific Chemical Bonds and Symmetries in the Glassy Flux by Revealing Peaks that Are a Fingerprint of the Vibration Modes of Molecules in the Flux. the Intensities of Specific Peaks in Raman Spectra Can Be Correlated with the Chemical Composition of the Melt and Associated Properties Such as Basicity and Viscosity. This Paper Reports on the First Use of a Portable Fiber-Optic Raman Sensor for in Situ Raman Spectroscopic Measurements of Molten Flux at 1400°C. the Work Demonstrates the Advantages of Fiber-Optic Raman Spectroscopy to Document the Structure and Chemical Composition of Flux Samples at Temperatures Typically Encountered in the Mold during Continuous Caster Operation. Experimental Results Demonstrate that the Composition-Dependent Raman Signal Shifts Can Be Detected at Caster Operating Temperatures, and the Use of High-Temperature Raman Analysis for In-Line Flux Monitoring Shows Significant Promise for the in Situ Detection of Changes in Flux Composition and Physical Properties during Casting

    MMIC amplifier based receivers for Earth remote sensing

    Get PDF
    We have developed amplifier based receivers using Indium Phosphide high electron mobility transistor (HEMT) monolithic microwave integrated circuit (MMIC) technology. These compact receivers are designed with atmospheric temperature and humidity sounding requirements in mind, operating at 100-125 GHz around the 118 GHz oxygen line, and at 160-185GHz near the 183 GHz water line, with average noise temperatures of 1600 and 1200K respectively. They are intended for applications where small volume and power consumption are critical. We will present laboratory data on the noise temperature of these receivers operated at room temperature and preliminary field data

    A W-band GCPW MMIC Diode Tripler

    Get PDF
    A W-band GCPW (grounded coplanar waveguide) MMIC diode tripler using GaAs PHEMT process is developed. An anti-parallel diode pair is used to produce third harmonic signal and a GCPW band pass filter is used to reject the spurious signal. The measured conversion loss is 18-20 dB from 87 to 102 GHz at 14-dBm input power. It is observed that if the filter were taken out, this tripler could be improved more than 5-dB in conversion loss without significant affecting in rejection performance. In this case, the chip could be reduced at least by half to a miniature size, that is, from 1.5 x 1 mm^2 to about 0.8 x 0.8 mm^2

    Design of HIV-1-PR inhibitors which do not create resistance: blocking the folding of single monomers

    Full text link
    One of the main problems of drug design is that of optimizing the drug--target interaction. In the case in which the target is a viral protein displaying a high mutation rate, a second problem arises, namely the eventual development of resistance. We wish to suggest a scheme for the design of non--conventional drugs which do not face any of these problems and apply it to the case of HIV--1 protease. It is based on the knowledge that the folding of single--domain proteins, like e.g. each of the monomers forming the HIV--1--PR homodimer, is controlled by local elementary structures (LES), stabilized by local contacts among hydrophobic, strongly interacting and highly conserved amino acids which play a central role in the folding process. Because LES have evolved over myriads of generations to recognize and strongly interact with each other so as to make the protein fold fast as well as to avoid aggregation with other proteins, highly specific (and thus little toxic) as well as effective folding--inhibitor drugs suggest themselves: short peptides (or eventually their mimetic molecules), displaying the same amino acid sequence of that of LES (p--LES). Aside from being specific and efficient, these inhibitors are expected not to induce resistance: in fact, mutations which successfully avoid their action imply the destabilization of one or more LES and thus should lead to protein denaturation. Making use of Monte Carlo simulations within the framework of a simple although not oversimplified model, which is able to reproduce the main thermodynamic as well as dynamic properties of monoglobular proteins, we first identify the LES of the HIV--1--PR and then show that the corresponding p--LES peptides act as effective inhibitors of the folding of the protease which do not create resistance

    Millimeter-wave array receivers for remote sensing

    Get PDF
    Recent developments in millimeter-wave receiver have enabled new remote sensing capabilities. MMIC circuits operating at frequencies as high as 200 GHz have enabled low-cost mass producible integrated receivers suitable for array applications. We will describe several ground-based demonstrations of this technology including development of integrated spectral line receivers for atmospheric remote sensing, a synthetic thinned aperture radiometer for atmospheric sounding and imaging and polarimetric array radiometers for astrophysics applications

    Millimeter-wave array receivers for remote sensing

    Get PDF
    Recent developments in millimeter-wave receiver have enabled new remote sensing capabilities. MMIC circuits operating at frequencies as high as 200 GHz have enabled low-cost mass producible integrated receivers suitable for array applications. We will describe several ground-based demonstrations of this technology including development of integrated spectral line receivers for atmospheric remote sensing, a synthetic thinned aperture radiometer for atmospheric sounding and imaging and polarimetric array radiometers for astrophysics applications
    • …
    corecore