160 research outputs found

    APP Expression in Primary Neuronal Cell Cultures fromP6 Mice during in vitro Differentiation

    Get PDF
    Primary neuronal cell cultures from P6 mice were investigated in order to study amyloid protein precursor (APP) gene expression in differentiating neurons. Cerebellar granule cells which strongly express APP 695 allowed the identification of three distinct isoforms of neuronal APP 695. The high-molecular-weight form of APP 695 is sialylated. The expression pattern of neuronal APP 695 changes during in vitro differentiation. Sialylated forms become more abundant upon longer cultivation time. The secreted forms of sialylated, neuronal APP 695 are shown to comigrate with APP isolated from cerebrospinal fluid. We suggest that the different sialylation states of APP 695 may reflect the modulation of cell-cell and cell-substrate interactions during in vitro differentiation and regeneration

    The sequence of the Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus genome

    Get PDF
    The nucleotide sequence of the Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HaSNPV) DNA genome was determined and analysed. The circular genome encompasses 131 403 bp, has a G C content of 39.1 molnd contains five homologous regions with a unique pattern of repeats. Computer-assisted analysis revealed 135 putative ORFs of 150 nt or larger; 100 ORFs have homologues in Autographa californica multicapsid NPV (AcMNPV) and a further 15 ORFs have homologues in other baculoviruses such as Lymantria dispar MNPV (LdMNPV), Spodoptera exigua MNPV (SeMNPV) and Xestia c-nigrum granulovirus (XcGV). Twenty ORFs are unique to HaSNPV without homologues in GenBank. Among the six previously sequenced baculoviruses, AcMNPV, Bombyx mori NPV (BmNPV), Orgyia pseudotsugata MNPV (OpMNPV), SeMNPV, LdMNPV and XcGV, 65 ORFs are conserved and hence are considered as core baculovirus genes. The mean overall amino acid identity of HaSNPV ORFs was the highest with SeMNPV and LdMNPV homologues. Other than three 'baculovirus repeat ORFs' (bro) and two 'inhibitor of apoptosis' (iap) genes, no duplicated ORFs were found. A putative ORF showing similarity to poly(ADP-ribose) glycohydrolases (parg) was newly identified. The HaSNPV genome lacks a homologue of the major budded virus (BV) glycoprotein gene, gp64, of AcMNPV, BmNPV and OpMNPV. Instead, a homologue of SeMNPV ORF8, encoding the major BV envelope protein, has been identified. GeneParityPlot analysis suggests that HaSNPV, SeMNPV and LdMNPV (group II) have structural genomic features in common and are distinct from the group I NPVs and from the granuloviruses. Cluster alignment between group I and group II baculoviruses suggests that they have a common ancestor

    Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders

    Get PDF
    Background Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families. Methods Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67), involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Results A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals. Conclusions This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS), epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts

    An Optimized Chloroplast DNA Extraction Protocol for Grasses (Poaceae) Proves Suitable for Whole Plastid Genome Sequencing and SNP Detection

    Get PDF
    peer-reviewedBackground Obtaining chloroplast genome sequences is important to increase the knowledge about the fundamental biology of plastids, to understand evolutionary and ecological processes in the evolution of plants, to develop biotechnological applications (e.g. plastid engineering) and to improve the efficiency of breeding schemes. Extraction of pure chloroplast DNA is required for efficient sequencing of chloroplast genomes. Unfortunately, most protocols for extracting chloroplast DNA were developed for eudicots and do not produce sufficiently pure yields for a shotgun sequencing approach of whole plastid genomes from the monocot grasses. Methodology/Principal Findings We have developed a simple and inexpensive method to obtain chloroplast DNA from grass species by modifying and extending protocols optimized for the use in eudicots. Many protocols for extracting chloroplast DNA require an ultracentrifugation step to efficiently separate chloroplast DNA from nuclear DNA. The developed method uses two more centrifugation steps than previously reported protocols and does not require an ultracentrifuge. Conclusions/Significance The described method delivered chloroplast DNA of very high quality from two grass species belonging to highly different taxonomic subfamilies within the grass family (Lolium perenne, Pooideae; Miscanthus×giganteus, Panicoideae). The DNA from Lolium perenne was used for whole chloroplast genome sequencing and detection of SNPs. The sequence is publicly available on EMBL/GenBank

    Cerebral atrophy as outcome measure in short-term phase 2 clinical trials in multiple sclerosis

    Get PDF
    Cerebral atrophy is a compound measure of the neurodegenerative component of multiple sclerosis (MS) and a conceivable outcome measure for clinical trials monitoring the effect of neuroprotective agents. In this study, we evaluate the rate of cerebral atrophy in a 6-month period, investigate the predictive and explanatory value of other magnetic resonance imaging (MRI) measures in relation to cerebral atrophy, and determine sample sizes for future short-term clinical trials using cerebral atrophy as primary outcome measure

    Patient engagement in designing, conducting, and disseminating clinical pain research : IMMPACT recommended considerations

    Get PDF
    The consensus recommendations are based on the views of IMMPACT meeting participants and do not necessarily represent the views of the organizations with which the authors are affiliated. The following individuals made important contributions to the IMMPACT meeting but were not able to participate in the preparation of this article: David Atkins, MD (Department of Veterans Affairs), Rebecca Baker, PhD (National Institutes of Health), Allan Basbaum, PhD (University of California San Francisco), Robyn Bent, RN, MS (Food and Drug Administration), Nathalie Bere, MPH (European Medicines Agency), Alysha Croker, PhD (Health Canada), Stephen Bruehl, PhD (Vanderbilt University), Michael Cobas Meyer, MD, MBS (Eli Lilly), Scott Evans, PhD (George Washington University), Gail Graham (University of Maryland), Jennifer Haythornthwaite, PhD (Johns Hopkins University), Sharon Hertz, MD (Hertz and Fields Consulting), Jonathan Jackson, PhD (Harvard Medical School), Mark Jensen, PhD (University of Washington), Francis Keefe, PhD (Duke University), Karim Khan, MD, PhD, MBA (Canadian Institutes of Health Research), Lynn Laidlaw (University of Aberdeen), Steven Lane (Patient-Centered Outcomes Research Institute), Karen Morales, BS (University of Maryland), David Leventhal, MBA (Pfizer), Jeremy Taylor, OBE (National Institute for Health Research), and Lena Sun, MD (Columbia University). The manuscript has not been submitted, presented, or published elsewhere. Parts of the manuscript have been presented in a topical workshop at IASP World Congress on Pain in Toronto, in 2022.Peer reviewedPublisher PD

    Interferon beta-1b is effective and has a favourable safety profile in Chinese patients with relapsing forms of multiple sclerosis

    Get PDF
    Abstract Background & Objective: No clinical study of any interferon beta therapy has yet been successfully conducted in Chinese multiple sclerosis patients, probably due to the low incidence of this disease in China. The primary objective of this study was to demonstrate that treating multiple sclerosis patients of Chinese origin with interferon beta-1b has a beneficial effect on disease course, as measured by the decrease of newly active lesions on magnetic resonance imaging. Methods: Chinese patients diagnosed with relapsing-remitting or secondary-progressive multiple sclerosis were enrolled in this multicenter, open label, single-arm study. Following a 3-month pre-treatment phase, patients were treated with 250 µg interferon beta-1b subcutaneously every other day for 6 months. Patients had regular assessments for treatment safety and efficacy of the treatment. Results: Thirty seven patients completed the trial. Significant decreases in the number of newly active lesions were observed in the 6-month treatment period compared with the pre-treatment period (median decrease 1.5 lesions, p<0.001). Most adverse events were mild and transient and no serious ones were observed. Conclusions: Treatment with interferon beta-1b significantly reduced the occurrence of new lesions and was well tolerated in this Chinese population. These findings support the use of interferon beta1b for treating Chinese MS patients

    Determination of the Proteolytic Cleavage Sites of the Amyloid Precursor-Like Protein 2 by the Proteases ADAM10, BACE1 and γ-Secretase

    Get PDF
    Regulated intramembrane proteolysis of the amyloid precursor protein (APP) by the protease activities α-, β- and γ-secretase controls the generation of the neurotoxic amyloid β peptide. APLP2, the amyloid precursor-like protein 2, is a homolog of APP, which shows functional overlap with APP, but lacks an amyloid β domain. Compared to APP, less is known about the proteolytic processing of APLP2, in particular in neurons, and the cleavage sites have not yet been determined. APLP2 is cleaved by the β-secretase BACE1 and additionally by an α-secretase activity. The two metalloproteases ADAM10 and ADAM17 have been suggested as candidate APLP2 α-secretases in cell lines. Here, we used RNA interference and found that ADAM10, but not ADAM17, is required for the constitutive α-secretase cleavage of APLP2 in HEK293 and SH-SY5Y cells. Likewise, in primary murine neurons knock-down of ADAM10 suppressed APLP2 α-secretase cleavage. Using mass spectrometry we determined the proteolytic cleavage sites in the APLP2 sequence. ADAM10 was found to cleave APLP2 after arginine 670, whereas BACE1 cleaves after leucine 659. Both cleavage sites are located in close proximity to the membrane. γ-secretase cleavage was found to occur at different peptide bonds between alanine 694 and valine 700, which is close to the N-terminus of the predicted APLP2 transmembrane domain. Determination of the APLP2 cleavage sites enables functional studies of the different APLP2 ectodomain fragments and the production of cleavage-site specific antibodies for APLP2, which may be used for biomarker development

    Structural aspects and physiological consequences of APP/APLP trans-dimerization

    Get PDF
    The amyloid precursor protein (APP) is one of the key proteins in Alzheimer’s disease (AD), as it is the precursor of amyloid β (Aβ) peptides accumulating in amyloid plaques. The processing of APP and the pathogenic features of especially Aβ oligomers have been analyzed in detail. Remarkably, there is accumulating evidence from cell biological and structural studies suggesting that APP and its mammalian homologs, the amyloid precursor-like proteins (APLP1 and APLP2), participate under physiological conditions via trans-cellular dimerization in synaptogenesis. This offers the possibility that loss of synapses in AD might be partially explained by dysfunction of APP/APLPs cell adhesion properties. In this review, structural characteristics of APP trans-cellular interaction will be placed critically in context with its putative physiological functions focusing on cell adhesion and synaptogenesis
    corecore