2,634 research outputs found

    High energy collision cascades in tungsten: dislocation loops structure and clustering scaling laws

    Full text link
    Recent experiments on in-situ high-energy self-ion irradiation of tungsten (W) show the occurrence of unusual cascade damage effects resulting from single ion impacts, shedding light on the nature of radiation damage expected in the tungsten components of a fusion reactor. In this paper, we investigate the dynamics of defect production in 150 keV collision cascades in W at atomic resolution, using molecular dynamics simulations and comparing predictions with experimental observations. We show that cascades in W exhibit no subcascade break-up even at high energies, producing a massive, unbroken molten area, which facilitates the formation of large defect clusters. Simulations show evidence of the formation of both 1/2 and interstitial-type dislocation loops, as well as the occurrence of cascade collapse resulting in vacancy-type dislocation loops, in excellent agreement with experimental observations. The fractal nature of the cascades gives rise to a scale-less power law type size distribution of defect clusters.Comment: 6 pages, 3 figure

    Water flow at all scales

    Get PDF

    Streams and their future inhabitants

    Get PDF

    Water plants past and present

    Get PDF

    Stream fishes and desirable fish stocks

    Get PDF

    Aquatic plants

    Get PDF
    corecore