99 research outputs found

    In Vivo Comparative Study on Acute and Sub-acute Biological Effects Induced by Ultrafine Particles of Different Anthropogenic Sources in BALB/c Mice

    Get PDF
    Exposure to ultrafine particles (UFPs) leads to adverse effects on health caused by an unbalanced ratio between UFPs deposition and clearance efficacy. Since air pollution toxicity is first direct to cardiorespiratory system, we compared the acute and sub-acute effects of diesel exhaust particles (DEP) and biomass burning-derived particles (BB) on bronchoalveolar Lavage Fluid (BALf), lung and heart parenchyma. Markers of cytotoxicity, oxidative stress and inflammation were analysed in male BALB/c mice submitted to single and repeated intra-tracheal instillations of 50 g UFPs. This in-vivo study showed the activation of inflammatory response (COX-2 and MPO) after exposure to UFPs, both in respiratory and cardiovascular systems. Exposure to DEP results also in pro- and anti-oxidant (HO-1, iNOS, Cyp1b1, Hsp70) protein levels increase, although, stress persist only in cardiac tissue under repeated instillations. Statistical correlations suggest that stress marker variation was probably due to soluble components and/or mediators translocation of from first deposition site. This mechanism, appears more important after repeated instillations, since inflammation and oxidative stress endure only in heart. In summary, chemical composition of UFPs influenced the activation of different responses mediated by their components or pro-inflammatory and pro-oxidative molecules, indicating DEP as the most damaging pollutant in the comparison

    Developmental learning impairments in a rodent model of nodular heterotopia

    Get PDF
    Developmental malformations of neocortex—including microgyria, ectopias, and periventricular nodular heterotopia (PNH)—have been associated with language learning impairments in humans. Studies also show that developmental language impairments are frequently associated with deficits in processing rapid acoustic stimuli, and rodent models have linked cortical developmental disruption (microgyria, ectopia) with rapid auditory processing deficits. We sought to extend this neurodevelopmental model to evaluate the effects of embryonic (E) day 15 exposure to the anti-mitotic teratogen methylazoxymethanol acetate (MAM) on auditory processing and maze learning in rats. Extensive cortical anomalies were confirmed in MAM-treated rats post mortem. These included evidence of laminar disruption, PNH, and hippocampal dysplasia. Juvenile auditory testing (P21–42) revealed comparable silent gap detection performance for MAM-treated and control subjects, indicating normal hearing and basic auditory temporal processing in MAM subjects. Juvenile testing on a more complex two-tone oddball task, however, revealed a significant impairment in MAM-treated as compared to control subjects. Post hoc analysis also revealed a significant effect of PNH severity for MAM subjects, with more severe disruption associated with greater processing impairments. In adulthood (P60–100), only MAM subjects with the most severe PNH condition showed deficits in oddball two-tone processing as compared to controls. However, when presented with a more complex and novel FM sweep detection task, all MAM subjects showed significant processing deficits as compared to controls. Moreover, post hoc analysis revealed a significant effect of PNH severity on FM sweep processing. Water Maze testing results also showed a significant impairment for spatial but not non-spatial learning in MAM rats as compared to controls. Results lend further support to the notions that: (1) generalized cortical developmental disruption (stemming from injury, genetic or teratogenic insults) leads to auditory processing deficits, which in turn have been suggested to play a causal role in language impairment; (2) severity of cortical disruption is related to the severity of processing impairments; (3) juvenile auditory processing deficits appear to ameliorate with maturation, but can still be elicited in adulthood using increasingly complex acoustic stimuli; and (4) malformations induced with MAM are also associated with generalized spatial learning deficits. These cumulative findings contribute to our understanding of the behavioral consequences of cortical developmental pathology, which may in turn elucidate mechanisms contributing to developmental language learning impairment in humans

    Physiological and Pathological Factors Affecting Drug Delivery to the Brain by Nanoparticles.

    Get PDF
    The prevalence of neurological/neurodegenerative diseases, such as Alzheimer's disease is known to be increasing due to an aging population and is anticipated to further grow in the decades ahead. The treatment of brain diseases is challenging partly due to the inaccessibility of therapeutic agents to the brain. An increasingly important observation is that the physiology of the brain alters during many brain diseases, and aging adds even more to the complexity of the disease. There is a notion that the permeability of the blood-brain barrier (BBB) increases with aging or disease, however, the body has a defense mechanism that still retains the separation of the brain from harmful chemicals in the blood. This makes drug delivery to the diseased brain, even more challenging and complex task. Here, the physiological changes to the diseased brain and aged brain are covered in the context of drug delivery to the brain using nanoparticles. Also, recent and novel approaches are discussed for the delivery of therapeutic agents to the diseased brain using nanoparticle based or magnetic resonance imaging guided systems. Furthermore, the complement activation, toxicity, and immunogenicity of brain targeting nanoparticles as well as novel in vitro BBB models are discussed

    Assessment of dynamic mechanical properties of the respiratory system during high-frequency oscillatory ventilation

    No full text
    OBJECTIVES: 1) To investigate the possibility of estimating respiratory system impedance (Zrs, forced oscillation technique) by using high-amplitude pressure oscillations delivered during high-frequency oscillatory ventilation; 2) to characterize the relationship between Zrs and continuous distending pressure during an increasing/decreasing continuous distending pressure trial; 3) to evaluate how the optimal continuous distending pressure identified by Zrs relates to the point of maximal curvature of the deflation limb of the quasi-static pressure-volume curve. DESIGN: Prospective laboratory animal investigation. SETTING: Experimental medicine laboratory. SUBJECTS: Eight New Zealand rabbits. INTERVENTIONS: The rabbits were ventilated with high-frequency oscillatory ventilation. Zrs was measured while continuous distending pressure was increased and decreased between 2 and 26 cm H2O in 1-minute steps of 4 cm H2O. At each step, a low-amplitude (6 cm H2O) sinusoidal signal was alternated with a high-amplitude (18 cm H2O) asymmetric high-frequency oscillatory ventilation square pressure waveform. Pressure-volume curves were determined at the end of the continuous distending pressure trial. All measurements were repeated after bronchoalveolar lavage. MEASUREMENTS AND MAIN RESULTS: Zrs was estimated from flow and pressure measured at the inlet of the tracheal tube and expressed as resistance (Rrs) and reactance (Xrs). Linear correlation between the values, measured by applying the small-amplitude sinusoidal signal and the ventilator waveform, was good for Xrs (r = 0.95 ± 0.04) but not for Rrs (r = 0.60 ± 0.34). Following lavage, the Xrs-continuous distending pressure curves presented a maximum on the deflation limb, identifying an optimal continuous distending pressure that was, on average, 1.1 ± 1.7 cm H2O below the point of maximal curvature of the deflation limb of the pressure-volume curves. CONCLUSIONS: Xrs can be accurately measured during high-frequency oscillatory ventilation without interrupting ventilation and/or connecting additional devices. An optimal continuous distending pressure close to the point of maximal curvature of the deflation limb of quasi-static pressure-volume curve can be identified by measuring Zrs during a decreasing continuous distending pressure trial. Zrs might constitute a useful bedside tool for monitoring lung mechanics and improving the continuous distending pressure optimization during high-frequency oscillatory ventilation

    Changes in the mechanical properties of the respiratory system during the development of interstitial lung edema.

    Get PDF
    BACKGROUND: Pulmonary edema induces changes in airway and lung tissues mechanical properties that can be measured by low-frequency forced oscillation technique (FOT). It is preceded by interstitial edema which is characterized by the accumulation of extravascular fluid in the interstitial space of the air-blood barrier. Our aim was to investigate the impact of the early stages of the development of interstitial edema on the mechanical properties of the respiratory system. METHODS: We studied 17 paralysed and mechanically ventilated closed-chest rats (325–375 g). Total input respiratory system impedance (Zrs) was derived from tracheal flow and pressure signals by applying forced oscillations with frequency components from 0.16 to 18.44 Hz distributed in two forcing signals. In 8 animals interstitial lung edema was induced by intravenous infusion of saline solution (0.75 ml/kg/min) for 4 hours; 9 control animals were studied with the same protocol but without infusion. Zrs was measured at the beginning and every 15 min until the end of the experiment. RESULTS: In the treated group the lung wet-to-dry weight ratio increased from 4.3 ± 0.72 to 5.23 ± 0.59, with no histological signs of alveolar flooding. Resistance (Rrs) increased in both groups over time, but to a greater extent in the treated group. Reactance (Xrs) did not change in the control group, while it decreased significantly at all frequencies but one in the treated. Significant changes in Rrs and Xrs were observed starting after ~135 min from the beginning of the infusion. By applying a constant phase model to partition airways and tissue mechanical properties, we observed a mild increase in airways resistance in both groups. A greater and significant increase in tissue damping (from 603.5 ± 100.3 to 714.5 ± 81.9 cmH(2)O/L) and elastance (from 4160.2 ± 462.6 to 5018.2 ± 622.5 cmH(2)O/L) was found only in the treated group. CONCLUSION: These results suggest that interstitial edema has a small but significant impact on the mechanical features of lung tissues and that these changes begin at very early stages, before the beginning of accumulation of extravascular fluid into the alveoli

    A pathogenetic hypothesis of Unverricht-Lundborg disease onset and progression

    No full text
    Unverricht-Lundborg disease (EPM1), the most common progressive myoclonic epilepsy, is associated with a defect of cystatin B (CSTB), a protease inhibitor. We used CSTB knockout mice to test the hypothesis that EPM1 onset is related to a latent hyperexcitability and that progression depends on higher susceptibility to seizure-induced cell damage. Hippocampal slices prepared from CSTB-deficient mice were hyperexcitable, as they responded to afferent stimuli in CA1 with multiple population spikes and kainate perfusion provoked the appearance of epileptic-like activity earlier than in WT mice. This hyperexcitability may depend on loss of inhibition, because the density of GABA-immunoreactive cells was reduced in the hippocampus of CSTB knockouts. In vivo, CSTB-deficient mice treated with kainate displayed increased susceptibility to seizures, with shorter latency to seizure onset and increased seizure severity compared with WT littermates. Furthermore, a greater degree of neuronal damage was observed in CSTB-deficient than in WT mice after seizures of identical grade, indicating increased susceptibility to seizure-induced cell death
    • …
    corecore