235 research outputs found

    Eating Behaviors and Body Composition Among College Freshmen: The Effect of Dietary and Commensal Culture on Biological Outcomes

    Get PDF
    As new college students become autonomous eaters, they may independently develop behaviors related to food that fulfill both biological and cultural purposes. I report here on the results of a biocultural, mixed-methods study of 21 students’ first term of college residence. Interview data and anthropometric measurements permit exploration of the interaction between a shift in participants’ cultural surroundings, physical condition, and food-related thoughts and actions. Participants’ goals of fulfilling their student responsibilities and maintaining social relationships predominantly dictated when, where, and what they ate, while their level of satisfaction with these behaviors was associated with whether their actions were consistent with personal definitions of “healthy.” Participants who demonstrated a conscious effort to eat in a healthy manner generally expressed the highest satisfaction with their food-related behaviors, but did not all experience similar changes in their physical conditions. Because participants’ goals influenced their satisfaction with their eating behaviors, they may affect participants’ behaviors in the future. Continued research should investigate how the goals that individuals articulate but do not act on during this period in their life course may influence their health and behaviors later in their lives

    Redox control of IL-6-mediated dental pulp stem cell differentiation on alginate/hydroxyapatite biocomposites for bone ingrowth

    Get PDF
    Composites and porous scaffolds produced with biodegradable natural polymers are very promising constructs which show high biocompatibility and suitable mechanical properties, with the possibility to be functionalized with growth factors involved in bone formation. For this purpose, alginate/hydroxyapatite (Alg/HAp) composite scaffolds using a novel production design were successfully developed and tested for their biocompatibility and osteoconductive properties in vitro. Redox homeostasis is crucial for dental pulp stem cell (DPSC) differentiation and mineralized matrix deposition, and interleukin-6 (IL-6) was found to be involved not only in immunomodulation but also in cell proliferation and differentiation. In the present study, we evaluated molecular pathways underlying the intracellular balance between redox homeostasis and extracellular matrix mineralization of DPSCs in the presence of composite scaffolds made of alginate and nano-hydroxyapatite (Alg/HAp). Prostaglandin-2 (PGE2) and IL-6 secretion was monitored by ELISA assays, and protein expression levels were quantified by Western blotting. This work aims to demonstrate a relationship between DPSC capacity to secrete a mineralized matrix in the presence of Alg/HAp scaffolds and their immunomodulatory properties. The variation of the molecular axis Nrf2 (nuclear factor erythroid 2-related factor 2)/PGE2/IL-6 suggests a tight intracellular balance between oxidative stress responses and DPSC differentiation in the presence of Alg/HAp scaffolds

    Identification of the zinc finger 216 (ZNF216) in human carcinoma cells. A potential regulator of EGFR activity

    Get PDF
    Epidermal Growth Factor Receptor (EGFR), a member of the ErbB family of receptor tyrosine kinase (RTK) proteins, is aberrantly expressed or deregulated in tumors and plays pivotal roles in cancer onset and metastatic progression. ZNF216 gene has been identified as one of Immediate Early Genes (IEGs) induced by RTKs. Overexpression of ZNF216 protein sensitizes 293 cell line to TNF-α induced apoptosis. However, ZNF216 overexpression has been reported in medulloblastomas and metastatic nasopharyngeal carcinomas. Thus, the role of this protein is still not clearly understood. In this study, the inverse correlation between EGFR and ZNF216 expression was confirmed in various human cancer cell lines differently expressing EGFR. EGF treatment of NIH3T3 cells overexpressing both EGFR and ZNF216 (NIH3T3-EGFR/ZNF216), induced a long lasting activation of EGFR in the cytosolic fraction and an accumulation of phosphorylated EGFR (pEGFR) more in the nuclear than in the cytosolic fraction compared to NIH3T3-EGFR cells. Moreover, EGF was able to stimulate an increased expression of ZNF216 in the cytosolic compartment and its nuclear translocation in a time-dependent manner in NIH3T3-EGFR/ZNF216. A similar trend was observed in A431 cells endogenously expressing the EGFR and transfected with Znf216. The increased levels of pEGFR and ZNF216 in the nuclear fraction of NIH3T3-EGFR/ZNF216 cells were paralleled by increased levels of phospho-MAPK and phospho-Akt. Surprisingly, EGF treatment of NIH3T3-EGFR/ZNF216 cells induced a significant increase of apoptosis thus indicating that ZNF216 could sensitize cells to EGF-induced apoptosis and suggesting that it may be involved in the regulation and effects of EGFR signaling

    Regulation of CREB activation by p38 mitogen activated protein kinase during human primary erythroblast differentiation.

    Get PDF
    Among the molecular events underlying erythroid differentiation, we analyzed the signalling pathway leading to cAMP response element binding (CREB) nuclear transcription factor activation. Normal donor blood light density cells differentiated to pro-erythroblasts during the proliferative phase (10 days) of the Human Erithroblast Massive Amplification (HEMA) culture, and to orthochromatic erythroblasts, during the differentiative phase (4 additional days) of the culture. Since erythropoietin was present all over the culture, also pro-erythroblasts left in proliferative medium for 14 days continued their maturation without reaching the final steps of differentiation. p38 Mitogen Activated Protein Kinase (p38 MAPK) and CREB maximal activation occurred upon 4 days of differentiation induction, whereas a lower activation was detectable in the cells maintained in parallel in proliferative medium (14 days). Interestingly, when SB203580, a specific p38 MAPK inhibitor, was added to the culture the percentage of differentiated cells decreased along with p38 MAPK and CREB phosphorylation. All in all, our results evidence a role for p38 MAPK in activating CREB metabolic pathway in the events leading to erythroid differentiation

    Evidence for the cost of reproduction in humans : high lifetime reproductive effort is associated with greater oxidative stress in post-menopausal women

    Get PDF
    Life history theory predicts trade-offs between reproductive effort and maternal survivorship in energy-restricted environments. However, empirical evidence for the positive association between maternal mortality and reproductive effort from energetically challenged human populations are mixed and physiological mechanisms that may underlie this association are poorly understood. We hypothesized that increases in aerobic metabolism during repeated periods of pregnancy and lactation result in increased oxidative stress that may contribute to somatic deterioration, vulnerability to illness, and accelerated aging. We therefore predicted that lifetime gravidity and parity would be related to levels of biomarkers of oxidative stress, as well as antioxidative defence enzymes in post-menopausal women. Our hypothesis was supported by positive linear associations between levels of 8-OHdG, a biomarker of DNA oxidative damage (β = 0.21, p = 4 pregnancies per lifetime) had 20% higher levels of 8-OHdG and 60% higher levels of Cu-Zn SOD compared to women with lower gravidity and parity (<4 pregnancies per lifetime). Our results present the first evidence for oxidative stress as a possible cost of reproductive effort in humans

    Caspase-3 is dually regulated by apoptogenic factors mitochondrial release and by SAPK/JNK metabolic pathway in leukemic cells exposed to etoposide-ionizing radiation combined treatment.

    Get PDF
    Ionizing radiation induces a series of multiple intracellular events which can lead to activation of caspases, cytoplasmic proteases involved in the occurrence of apoptosis. The response of leukemic cells to ionizing radiation is amplified when they have been pre-treated with the anticancer drug etoposide, therefore the aim of this work has been to establish the lowest etoposide concentration combined with the lowest ionizing radiation dose to obtain the best antineoplastic response. Two leukemic cell lines, HL-60 and Jurkat, employed in this study, demonstrated different sensitivities to ionizing radiation and to etoposide treatment, with Jurkat T cells requiring a higher dose (1 ÎĽM) to display cell cycle perturbation and apoptotic DNA damage similar to those seen in HL-60. We hypothesize that this kind of response could be mediated by mitochondrial release of apoptogenic factors and by SAPK/JNK metabolic pathway activation, both leading to caspase-3 cleavage. All in all these results provide insight into the sensitivity or resistance of leukemic cells to antineoplastic agents and identify molecular targets for rational therapeutic intervention strategies

    Chitlac-coated Thermosets Enhance Osteogenesis and Angiogenesis in a Co-culture of Dental Pulp Stem Cells and Endothelial Cells

    Get PDF
    Dental pulp stem cells (DPSCs) represent a population of stem cells which could be useful in oral and maxillofacial reconstruction. They are part of the periendothelial niche, where their crosstalk with endothelial cells is crucial in the cellular response to biomaterials used for dental restorations. DPSCs and the endothelial cell line EA.hy926 were co-cultured in the presence of Chitlac-coated thermosets in culture conditions inducing, in turn, osteogenic or angiogenic differentiation. Cell proliferation was evaluated by 3\u2013[4,5\u2013dimethyl\u2013thiazol\u20132\u2013yl\u2013]\u20132,5\u2013diphenyl tetrazolium bromide (MTT) assay. DPSC differentiation was assessed by measuring Alkaline Phosphtase (ALP) activity and Alizarin Red S staining, while the formation of new vessels was monitored by optical microscopy. The IL-6 and PGE2 production was evaluated as well. When cultured together, the proliferation is increased, as is the DPSC osteogenic differentiation and EA.hy926 vessel formation. The presence of thermosets appears either not to disturb the system balance or even to improve the osteogenic and angiogenic differentiation. Chitlac-coated thermosets confirm their biocompatibility in the present co-culture model, being capable of improving the differentiation of both cell types. Furthermore, the assessed co-culture appears to be a useful tool to investigate cell response toward newly synthesized or commercially available biomaterials, as well as to evaluate their engraftment potential in restorative dentistry

    Probenecid inhibits SARS-CoV-2 replication in vivo and in vitro

    Get PDF
    Effective vaccines are slowing the COVID-19 pandemic, but SARS-CoV-2 will likely remain an issue in the future making it important to have therapeutics to treat patients. There are few options for treating patients with COVID-19. We show probenecid potently blocks SARS-CoV-2 replication in mammalian cells and virus replication in a hamster model. Furthermore, we demonstrate that plasma concentrations up to 50-fold higher than the protein binding adjusted IC(90) value are achievable for 24 h following a single oral dose. These data support the potential clinical utility of probenecid to control SARS-CoV-2 infection in humans

    Hydroxytyrosol Reduces Foam Cell Formation and Endothelial Inflammation Regulating the PPARγ/LXRα/ABCA1 Pathway.

    Get PDF
    Cholesterol accumulation in macrophages leads to the formation of foam cells and increases the risk of developing atherosclerosis. We have verified whether hydroxytyrosol (HT), a phenolic compound with anti-inflammatory and antioxidant properties, can reduce the cholesterol build up in THP-1 macrophage-derived foam cells. We have also investigated the potential mechanisms. Oil Red O staining and high-performance liquid chromatography (HPLC) assays were utilized to detect cellular lipid accumulation and cholesterol content, respectively, in THP-1 macrophages foam cells treated with HT. The impact of HT on cholesterol metabolism-related molecules (SR-A1, CD36, LOX-1, ABCA1, ABCG1, PPARγ and LRX-α) in foam cells was assessed using real-time PCR (RT-qPCR) and Western blot analyses. Finally, the effect of HT on the adhesion of THP-1 monocytes to human vascular endothelial cells (HUVEC) was analyzed to study endothelial activation. We found that HT activates the PPARγ/LXRα pathway to upregulate ABCA1 expression, reducing cholesterol accumulation in foam cells. Moreover, HT significantly inhibited monocyte adhesion and reduced the levels of adhesion factors (ICAM-1 and VCAM-1) and pro-inflammatory factors (IL-6 and TNF-α) in LPS-induced endothelial cells. Taken together, our findings suggest that HT, with its ability to interfere with the import and export of cholesterol, could represent a new therapeutic strategy for the treatment of atherosclerotic disease
    • …
    corecore