23,511 research outputs found
Efficient algorithm for optimizing data pattern tomography
We give a detailed account of an efficient search algorithm for the data
pattern tomography proposed by J. Rehacek, D. Mogilevtsev, and Z. Hradil [Phys.
Rev. Lett.~\textbf{105}, 010402 (2010)], where the quantum state of a system is
reconstructed without a priori knowledge about the measuring setup. The method
is especially suited for experiments involving complex detectors, which are
difficult to calibrate and characterize. We illustrate the approach with the
case study of the homodyne detection of a nonclassical photon state.Comment: 5 pages, 5 eps-color figure
The response of a neutral atom to a strong laser field probed by transient absorption near the ionisation threshold
We present transient absorption spectra of an extreme ultraviolet attosecond pulse train in helium dressed by an 800 nm laser field with intensity ranging from W/cm to W/cm. The energy range probed spans 16-42 eV, straddling the first ionisation energy of helium (24.59 eV). By changing the relative polarisation of the dressing field with respect to the attosecond pulse train polarisation we observe a large change in the modulation of the absorption reflecting the vectorial response to the dressing field. With parallel polarized dressing and probing fields, we observe significant modulations with periods of one half and one quarter of the dressing field period. With perpendicularly polarized dressing and probing fields, the modulations of the harmonics above the ionisation threshold are significantly suppressed. A full-dimensionality solution of the single-atom time-dependent Schr odinger equation obtained using the recently developed ab-initio time-dependent B-spline ADC method reproduce some of our observations
Nonlinear damping in mechanical resonators based on graphene and carbon nanotubes
Carbon nanotubes and graphene allow fabricating outstanding nanomechanical
resonators. They hold promise for various scientific and technological
applications, including sensing of mass, force, and charge, as well as the
study of quantum phenomena at the mesoscopic scale. Here, we have discovered
that the dynamics of nanotube and graphene resonators is in fact highly exotic.
We propose an unprecedented scenario where mechanical dissipation is entirely
determined by nonlinear damping. As a striking consequence, the quality factor
Q strongly depends on the amplitude of the motion. This scenario is radically
different from that of other resonators, whose dissipation is dominated by a
linear damping term. We believe that the difference stems from the reduced
dimensionality of carbon nanotubes and graphene. Besides, we exploit the
nonlinear nature of the damping to improve the figure of merit of
nanotube/graphene resonators.Comment: main text with 4 figures, supplementary informatio
Achieving the ultimate quantum timing resolution
Accurate time-delay measurement is at the core of many modern technologies. Here, we present a temporal-mode demultiplexing scheme that achieves the ultimate quantum precision for the simultaneous estimation of the temporal centroid, the time offset, and the relative intensities of an incoherent mixture of ultrashort pulses at the single-photon level. We experimentally resolve temporal separations ten times smaller than the pulse duration, as well as imbalanced intensities differing by a factor of 10^2. This represents an improvement of more than an order of magnitude over the best standard methods based on intensity detection
Point-charge electrostatics in disordered alloys
A simple analytic model of point-ion electrostatics has been previously
proposed in which the magnitude of the net charge q_i on each atom in an
ordered or random alloy depends linearly on the number N_i^(1) of unlike
neighbors in its first coordination shell. Point charges extracted from recent
large supercell (256-432 atom) local density approximation (LDA) calculations
of Cu-Zn random alloys now enable an assessment of the physical validity and
accuracy of the simple model. We find that this model accurately describes (i)
the trends in q_i vs. N_i^(1), particularly for fcc alloys, (ii) the magnitudes
of total electrostatic energies in random alloys, (iii) the relationships
between constant-occupation-averaged charges and Coulomb shifts
(i.e., the average over all sites occupied by either or atoms) in the
random alloy, and (iv) the linear relation between the site charge q_i and the
constant- charge-averaged Coulomb shift (i.e., the average over all sites with
the same charge) for fcc alloys. However, for bcc alloys the fluctuations
predicted by the model in the q_i vs. V_i relation exceed those found in the
LDA supercell calculations. We find that (a) the fluctuations present in the
model have a vanishing contribution to the electrostatic energy. (b)
Generalizing the model to include a dependence of the charge on the atoms in
the first three (two) shells in bcc (fcc) - rather than the first shell only -
removes the fluctuations, in complete agreement with the LDA data. We also
demonstrate an efficient way to extract charge transfer parameters of the
generalized model from LDA calculations on small unit cells.Comment: 15 pages, ReVTeX galley format, 7 eps figures embedded using psfig,
to be published in Phys. Rev.
Stable standing waves for a class of nonlinear Schroedinger-Poisson equations
We prove the existence of orbitally stable standing waves with prescribed
-norm for the following Schr\"odinger-Poisson type equation \label{intro}
%{%{ll} i\psi_{t}+ \Delta \psi - (|x|^{-1}*|\psi|^{2}) \psi+|\psi|^{p-2}\psi=0
\text{in} \R^{3}, %-\Delta\phi= |\psi|^{2}& \text{in} \R^{3},%. when . In the case we prove the existence and
stability only for sufficiently large -norm. In case our approach
recovers the result of Sanchez and Soler \cite{SS} %concerning the existence
and stability for sufficiently small charges. The main point is the analysis of
the compactness of minimizing sequences for the related constrained
minimization problem. In a final section a further application to the
Schr\"odinger equation involving the biharmonic operator is given
Easily retrievable objects among the NEO population
Asteroids and comets are of strategic importance for science in an effort to understand the formation, evolution and composition of the Solar System. Near-Earth Objects (NEOs) are of particular interest because of their accessibility from Earth, but also because of their speculated wealth of material resources. The exploitation of these resources has long been discussed as a means to lower the cost of future space endeavours. In this paper, we consider the currently known NEO population and define a family of so-called Easily Retrievable Objects (EROs), objects that can be transported from accessible heliocentric orbits into the Earthâs neighbourhood at affordable costs. The asteroid retrieval transfers are sought from the continuum of low energy transfers enabled by the dynamics of invariant manifolds; specifically, the retrieval transfers target planar, vertical Lyapunov and halo orbit families associated with the collinear equilibrium points of the Sun-Earth Circular Restricted Three Body problem. The judicious use of these dynamical features provides the best opportunity to find extremely low energy Earth transfers for asteroid material. A catalogue of asteroid retrieval candidates is then presented. Despite the highly incomplete census of very small asteroids, the ERO catalogue can already be populated with 12 different objects retrievable with less than 500 m/s of Îv. Moreover, the approach proposed represents a robust search and ranking methodology for future retrieval candidates that can be automatically applied to the growing survey of NEOs
Orientational order parameters of a de Vriesâtype ferroelectric liquid crystal obtained by polarized Raman spectroscopy and x-ray diffraction
The orientational order parameters â©P2âȘ and â©P4âȘ of the ferroelectric, de Vriesâtype liquid crystal 9HL have been determined in the SmA* and SmC* phases by means of polarized Raman spectroscopy, and in the SmA* phase using x-ray diffraction. Quantum density functional theory predicts Raman spectra for 9HL that are in good agreement with the observations and indicates that the strong Raman band probed in the experiment corresponds to the uniaxial, coupled vibration of the three phenyl rings along the molecular long axis. The magnitudes of the orientational order parameters obtained in the Raman and x-ray experiments differ dramatically from each other, a discrepancy that is resolved by considering that the two techniques probe the orientational distributions of different molecular axes. We have developed a systematic procedure in which we calculate the angle between these axes and rescale the orientational order parameters obtained from x-ray scattering with results that are then in good agreement with the Raman data. At least in the case of 9HL, the results obtained by both techniques support a âsugar loafâ orientational distribution in the SmA* phase with no qualitative difference to conventional smectics A. The role of individual molecular fragments in promoting de Vriesâtype behavior is considered
Drinfeld Twists and Symmetric Bethe Vectors of Supersymmetric Fermion Models
We construct the Drinfeld twists (factorizing -matrices) of the
-invariant fermion model. Completely symmetric representation of the
pseudo-particle creation operators of the model are obtained in the basis
provided by the -matrix (the -basis). We resolve the hierarchy of the
nested Bethe vectors in the -basis for the supersymmetric model.Comment: Latex File, 24 pages, no figure, some misprints are correcte
- âŠ