50,351 research outputs found

    1.5V fully programmable CMOS Membership Function Generator Circuit with proportional DC-voltage control

    Get PDF
    A Membership Function Generator Circuit (MFGC) with bias supply of 1.5 Volts and independent DC-voltage programmable functionalities is presented. The realization is based on a programmable differential current mirror and three compact voltage-to-current converters, allowing continuous and quasi-linear adjustment of the center position, height, width and slopes of the triangular/trapezoidal output waveforms. HSPICE simulation results of the proposed circuit using the parameters of a double-poly, three metal layers, 0.5 μm CMOS technology validate the functionality of the proposed architecture, which exhibits a maximum deviation of the linearity in the programmability of 7 %

    Comprehensive theory of the relative phase in atom-field interactions

    Full text link
    We explore the role played by the quantum relative phase in a well-known model of atom-field interaction, namely, the Dicke model. We introduce an appropriate polar decomposition of the atom-field relative amplitudes that leads to a truly Hermitian relative-phase operator, whose eigenstates correctly describe the phase properties, as we demonstrate by studying the positive operator-valued measure derived from it. We find the probability distribution for this relative phase and, by resorting to a numerical procedure, we study its time evolution.Comment: 20 pages, 4 figures, submitted to Phys. Rev.

    Time-Multiplexed Measurements of Nonclassical Light at Telecom Wavelengths

    Get PDF
    We report the experimental reconstruction of the statistical properties of an ultrafast pulsed type-II parametric down conversion source in a periodically poled KTP waveguide at telecom wavelengths, with almost perfect photon-number correlations. We used a photon-number-resolving time-multiplexed detector based on a fiber-optical setup and a pair of avalanche photodiodes. By resorting to a germane data-pattern tomography, we assess the properties of the nonclassical light states states with unprecedented precision.Comment: 4.5 pages, 5 color figues. Comments welcome

    Nano-building block based-hybrid organic–inorganic copolymers with self-healing properties

    Get PDF
    New dynamic materials, that can repair themselves after strong damage, have been designed by hybridization of polymers with structurally well-defined nanobuilding units. The controlled design of cross-linked poly(n-butyl acrylate) (pBuA) has been performed by introducing a very low amount of a specific tin oxo-cluster. Sacrificial domains with non-covalent interactions (i.e. ionic bonds) developed at the hybrid interface play a double role. Such interactions are strong enough to cross-link the polymer, which consequently exhibits rubber-like elasticity behavior and labile enough to enable, after severe mechanical damage, dynamic bond recombination leading to an efficient healing process at room temperature. In agreement with the nature of the reversible links at the hybrid interface, the healing process can speed up considerably with temperature. 1H and 119Sn PFG NMR has been used to evidence the dynamic nature of these peculiar cross-linking nodes
    corecore