24 research outputs found

    Functional Diversity of Small and Large Trees Along Secondary Succession in a Tropical Dry Forest

    Get PDF
    Functional Diversity is considered an important driver of community assembly in environmental and successional gradients. To understand tree assembly processes in a semideciduous tropical forest, we analyzed the variation of Functional Richness (FRic), Functional Divergence (FDiv), and Functional Evenness (FEve) of small vs. large trees in relation to fallow age after slash-and-burn agriculture and topographical position (flat sites vs. hills). FRic of small trees was lower than null model predicted values across the successional gradient, and decreased unexpectedly in older successional ages. FRic of large trees was higher than null model predictions early in succession and lower in late-successional stands on hills. Dominant species were more similar (low FDiv) in early and intermediate successional stands for small trees, and on hills for large trees, suggesting that species that are best adapted to harsh conditions share similar traits. We also found evidence of competitive exclusion among similar species (high FEve) for small trees in early successional stands. Overall, our results indicate that community assembly of small trees is strongly affected by the changing biotic and abiotic conditions along the successional and topographical gradient. For large trees, hills may represent the most stressful conditions in this landscape

    Patterns of Plant Functional Variation and Specialization Along Secondary Succession and Topography in a Tropical Dry Forest

    Get PDF
    Long-term human disturbance of tropical forests may favor generalist plant species leading to biotic homogenization. We aimed to a) assess if generalist species dominate across different successional ages and topographical positions in a tropical dry forest with a long history of human disturbance, b) to characterize functional traits associated with generalist and specialist species, and c) to assess if a predominance of generalists leads to a homogeneous functional structure across the landscape. We used a multinomial model of relative abundances to classify 118 woody species according to their successional/topographic habitat. Three species were classified as secondary-forest specialists, five as mature-forest specialists, 35 as generalists, and 75 as too rare to classify. According to topography, six species were hill specialists, eight flat-site specialists, 35 generalists, and 70 too rare. Generalists dominated across the landscape. Analysis of 14 functional traits from 65 dominant species indicated that generalists varied from acquisitive strategies of light and water early in succession to conservative strategies in older forests and on hills. Long-term human disturbance may have favored generalist species, but this did not result in functional homogenization. Further analyses considering other functional traits, and temporal and fine-scale microenvironmental variation are needed to better understand community assembly

    Above- and below-ground trait coordination in tree seedlings depend on the most limiting resource: a test comparing a wet and a dry tropical forest in Mexico

    Get PDF
    The study of above- and below-ground organ plant coordination is crucial for understanding the biophysical constraints and trade-offs involved in species’ performance under different environmental conditions. Environmental stress is expected to increase constraints on species trait combinations, resulting in stronger coordination among the organs involved in the acquisition and processing of the most limiting resource. To test this hypothesis, we compared the coordination of trait combinations in 94 tree seedling species from two tropical forest systems in Mexico: dry and moist. In general, we expected that the water limitation experienced by dry forest species would result in stronger leaf-stem-root coordination than light limitation experienced by moist forest species. Using multiple correlations analyses and tools derived from network theory, we found similar functional trait coordination between forests. However, the most important traits differed between the forest types. While in the dry forest the most central traits were all related to water storage (leaf and stem water content and root thickness), in the moist forest they were related to the capacity to store water in leaves (leaf water content), root efficiency to capture resources (specific root length), and stem toughness (wood density). Our findings indicate that there is a shift in the relative importance of mechanisms to face the most limiting resource in contrasting tropical forests

    Environmental gradients and the evolution of successional habitat specialization: A test case with 14 Neotropical forest sites

    Get PDF
    https://www.scopus.com/inward/record.url?eid=2-s2.0-84939570316&partnerID=40&md5=fcadae8e6c274e8b7efca96099304a7cSuccessional gradients are ubiquitous in nature, yet few studies have systematically examined the evolutionary origins of taxa that specialize at different successional stages. Here we quantify successional habitat specialization in Neotropical forest trees and evaluate its evolutionary lability along a precipitation gradient. Theoretically, successional habitat specialization should be more evolutionarily conserved in wet forests than in dry forests due to more extreme microenvironmental differentiation between early and late-successional stages in wet forest. We applied a robust multinomial classification model to samples of primary and secondary forest trees from 14 Neotropical lowland forest sites spanning a precipitation gradient from 788 to 4000 mm annual rainfall, identifying species that are old-growth specialists and secondary forest specialists in each site. We constructed phylogenies for the classified taxa at each site and for the entire set of classified taxa and tested whether successional habitat specialization is phylogenetically conserved. We further investigated differences in the functional traits of species specializing in secondary vs. old-growth forest along the precipitation gradient, expecting different trait associations with secondary forest specialists in wet vs. dry forests since water availability is more limiting in dry forests and light availability more limiting in wet forests. Successional habitat specialization is non-randomly distributed in the angiosperm phylogeny, with a tendency towards phylogenetic conservatism overall and a trend towards stronger conservatism in wet forests than in dry forests. However, the specialists come from all the major branches of the angiosperm phylogeny, and very few functional traits showed any consistent relationships with successional habitat specialization in either wet or dry forests. Synthesis. The niche conservatism evident in the habitat specialization of Neotropical trees suggests a role for radiation into different successional habitats in the evolution of species-rich genera, though the diversity of functional traits that lead to success in different successional habitats complicates analyses at the community scale. Examining the distribution of particular lineages with respect to successional gradients may provide more insight into the role of successional habitat specialization in the evolution of species-rich taxa

    β-Diversity of Functional Groups of Woody Plants in a Tropical Dry Forest in Yucatan

    No full text
    <div><p>Two main theories have attempted to explain variation in plant species composition (β-diversity). Niche theory proposes that most of the variation is related to environment (environmental filtering), whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning), and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation) vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position), whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity –possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and β-diversity patterns and correlates that are not apparent when focusing on overall woody plant diversity, and that have important implications for ecological theory and biodiversity conservation.</p></div
    corecore