
Kennesaw State University
DigitalCommons@Kennesaw State University

Faculty Publications

5-2017

Patterns of Plant Functional Variation and
Specialization Along Secondary Succession and
Topography in a Tropical Dry Forest
Lucía Sanaphre-Villanueva
Centro de Investigación Cientifica de Yucatán

Juan Manuel Dupuy
Centro de Investigación Cientifíca de Yucatán

José Luis Andrade
Centro de Investigación Científica de Yucatán

Cassandra Reyes-García
Centro de Investigación Científica de Yucatán

Paula C. Jackson
Kennesaw State University, pjackson@kennesaw.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.kennesaw.edu/facpubs

Part of the Ecology and Evolutionary Biology Commons, and the Plant Sciences Commons

This Article is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Faculty
Publications by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact
digitalcommons@kennesaw.edu.

Recommended Citation
Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further
distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

http://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F3990&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F3990&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F3990&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/14?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F3990&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/102?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F3990&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu


Authors
Lucía Sanaphre-Villanueva, Juan Manuel Dupuy, José Luis Andrade, Cassandra Reyes-García, Paula C.
Jackson, and Horacio Paz

This article is available at DigitalCommons@Kennesaw State University: http://digitalcommons.kennesaw.edu/facpubs/3990

http://digitalcommons.kennesaw.edu/facpubs/3990?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F3990&utm_medium=PDF&utm_campaign=PDFCoverPages


LETTER
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Abstract
Long-term human disturbance of tropical forests may favor generalist plant species leading to
biotic homogenization. We aimed to a) assess if generalist species dominate across different
successional ages and topographical positions in a tropical dry forest with a long history of
human disturbance, b) to characterize functional traits associated with generalist and specialist
species, and c) to assess if a predominance of generalists leads to a homogeneous functional
structure across the landscape. We used a multinomial model of relative abundances to classify
118 woody species according to their successional/topographic habitat. Three species were
classified as secondary-forest specialists, five as mature-forest specialists, 35 as generalists, and 75
as too rare to classify. According to topography, six species were hill specialists, eight flat-site
specialists, 35 generalists, and 70 too rare. Generalists dominated across the landscape. Analysis of
14 functional traits from 65 dominant species indicated that generalists varied from acquisitive
strategies of light and water early in succession to conservative strategies in older forests and on
hills. Long-term human disturbance may have favored generalist species, but this did not result
in functional homogenization. Further analyses considering other functional traits, and temporal
and fine-scale microenvironmental variation are needed to better understand community
assembly.

1. Introduction

Human-induced environmental change imposes new
filters and dispersal constraints on species. These
constraints may favor the spread of broadly tolerant,
generalist species, capable of surviving in a wide range
of environmental conditions (McKinney and Lock-
wood 1999, Olden et al 2004). Moreover, forest
fragmentation may favor the replacement of species
distinctive of old forests by young forest species, which
may proliferate across human-modified landscapes
(Laurance et al 2006, Santos et al 2008, Lôbo et al
2011). If so, this would lead to greater genetic,
taxonomic and functional similarity among commu-
nities (i.e. biotic homogenization) (McKinney and

Lockwood 1999, Olden et al 2004). The importance of
defining the characteristics that differentiate generalist
from specialist species increases as human influences
on ecosystems become more widespread, frequent and
long-lasting (Chazdon et al 2011).

Tropical dry forests (TDF) are among the most
threatened ecosystems in the world in part because the
severe dry season facilitates the use of fire and slows
soil degradation characteristics that are highly valuable
for agriculture and other land uses (Janzen 1988). In
México, by 2009 more than 70% of TDF potential
cover was lost, generating a mosaic of patches of
different successional ages (Portillo-Quintero and
Sánchez-Azofeifa 2010). In this mosaic, early succes-
sional stages have higher temperature and water vapor
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pressure deficit, and lower surface soil water content
compared to older areas (Markesteijn et al 2010,
Lebrija-Trejos et al 2011, Pineda-García et al 2013,
Buzzard et al 2016). Similarly, soil water content is
lower on hills than on flat sites and valleys
(Markesteijn et al 2010, Méndez-Alonzo et al 2013).

Functional studies on TDF succession have found
that species dominating early in succession, where
radiation loads are higher (particularly during the dry
season); i.e. young secondary forest specialists, show a
greater water use efficiency, with traits associated with
heat dissipation through leaf or leaflet movement, and
avoidance of hydraulic failure through leaf shedding,
high wood density, and/or deeper root foraging
capacity (Lebrija-Trejos et al 2010, Pineda-García
et al 2011, Méndez-Alonzo et al 2013, Paz et al 2015).
Conversely, at later successional stages, the increase in
density of individuals and foliage gives rise to a more
shaded and humid microenvironment (Lebrija-Trejos
et al 2011, Pineda-García et al 2013, Buzzard et al
2016). These changes favor species with an acquisitive
strategy, i.e. old growth forest specialists, with traits
such as high specific leaf area and low leaf dry matter
content (Buzzard et al 2016) associated with higher
water availability, or low wood density that increases
hydraulic conductivity and water storage capacity
(Reich and Borchert 1984, Markesteijn et al 2011).

Concerning topographic position, deciduous tree
species with high wood density and water-storing trees
with low wood density are predominantly distributed
in upland dry forests (Borchert 1994, Méndez-Alonzo
et al 2013), whereas evergreen species with either high
or low wood density tend to dominate in the more
humid lowland sites (Borchert 1994, Méndez-Alonzo
et al 2013). However, studies addressing the functional
differentiation between young- and old-growth forest
specialists (Lebrija-Trejos et al 2010, Alvarez-Añorve
et al 2012) or between upland and lowland specialists
(Borchert 1994, Méndez-Alonzo et al 2013), have not
addressed the functional traits that may facilitate the
establishment and survival of generalist species along
the complete successional and topographic gradients.

Previous studies in TDF in the Yucatan Peninsula
show a high similarity among plant communities, and
suggest that pioneer and generalist species may
predominate in the mostly early successional habitats
due to a prolonged and recurrent use of vegetation
over 2000 years, from pre-Columbian Mayas to
current inhabitants (Mizrahi et al 1997, González-
Iturbe et al 2002, Schultz 2003). Other studies in the
Peninsula found that plant species composition and
structure were mainly determined by topography, soil
properties, and successional age (White and Hood
2004, Dupuy et al 2012a, 2012b, López-Martínez et al
2013).

The aim of this study is to assess if secondary
succession and topographic position differentiate
species into generalists and specialists in a TDF in
Yucatan, and to answer the following questions: Given

the millennial land use in our study site, (1) Are
generalist species more abundant than specialists over
the whole successional and topographical gradients;
(2) Do generalist species show primarily acquisitive or
conservative strategies; (3) Does a large pool of
generalist species lead to a homogeneous functional
structure of vegetation across the landscape? To
address these questions, we used a multinomial model
of relative abundances of woody species across plots,
and classified species according to their successional/
topographic habitat into specialists, generalists, or too
rare to classify with confidence. We then analyzed
functional traits of the dominant species to determine
how strategies varied between groups growing in
different habitats. We expected that: (1) Generalist
species would be more abundant than specialists along
the successional and topographical gradients; (2) If
disturbance generates habitats that limit growth,
generalists will tend to have conservative strategies;
conversely, if disturbance releases resources, general-
ists will tend to be acquisitive. (3) In line with previous
studies, conservative species would dominate in sites
with the most limiting conditions: early successional
sites and hills; whereas acquisitive species would
dominate in later-successional and flat sites.

2. Materials and methods

2.1. Study site
The study area covers a 352 km2 landscape of semi-
deciduous tropical forest in the Yucatan Peninsula,
Mexico, with warm sub-humid AW1 climate (García
1981), summer rains, a dry season from November to
April, mean annual temperature of 26 °C and mean
annual precipitation between 900 and 1100 mm. The
landscape consists of flat areas with relatively deep
(40–100 cm) clayey Luvisols and Cambisols and small
limestone hills (elevations between 60 and 190 m asl)
with shallow (5–20 cm) rocky Lithosols and Rendzines
(Flores and Espejel 1994, Bautista-Z�uñiga et al 2003).
Soil fertility tends to increase with forest stand age and
is higher on hills than on flat areas (Dupuy et al 2012b,
López-Martínez et al 2013). The predominant land use
has been traditional slash and burn agriculture,
practiced by the Mayan people for over 2000 years
(Rico-Gray and García-Franco 1991). For further
details see (Dupuy et al 2012b).

2.2. Sampling design
A Spot 5 satellite image (year 2005) was used to
conduct a supervised classification using the following
vegetation classes (1) 3 to 8 years of secondary
succession, (2) 9 to 15 years, (3) > 15 years on flat
areas, and (4) > 15 years on hills (as flat sites are
preferred by local farmers) (Dupuy et al 2012a). In the
summers of 2008 and 2009, twenty-three 1 km2

landscape units were selected across the landscape, and
12 sampling plots (three per vegetation class) were
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established in each unit (276 plots in total). Stand age
of each plot was determined from interviews with local
residents who owned or had used the land. Each plot
consisted of a circular 200 m2 area where all woody
plants with a diameter at breast height (DBH,
measured at 1.3 m height) > 5 cm were identified
and measured (1–99 individuals per plot, mean ¼
33.3, 9129 individuals in total) (see Hernández-
Stefanoni et al 2011 for further details).

2.3. Species selection
Relative importance value (RIV) for all species in each
vegetation class was calculated, as the sum of their
relative abundance, frequency and basal area. For each
vegetation class and separately for trees, lianas and
shrubs, species that constituted at least 90% of the
cumulative RIV were selected, yielding a total of 72
species. However, only 65 species were included for the
analyses (those for which we could collect material
from at least five individuals), representing 90% ±
10% (mean ± standard deviation) of the total richness
per plot (Pakeman and Quested 2007). Of these
species, 45 were trees, 11 shrubs, and 9 lianas.

2.4. Functional traits
Leaf samples were collected from at least five
individuals per species (14 individuals per species
on average, 934 in total) and wood samples from four
individuals per species from August to November,
2011 and from September to November, 2012. We
calculated total leaf area (LA), minimal photosynthetic
unit (MPU, leaf area for entire leaves or leaflet area for
compound leaves), leaf dry matter content (LDMC),
specific leaf area (SLA) and wood specific gravity
(WSG) (for details see online supplementary material
1). The following binary traits were determined from
field specimens, parataxonomists, and bibliography:
leaf pulvination (LPulv); leaf pubescence (LPb); plant
exudates (Ex); plant spininess (Sp; with 0 ¼ absent, 1
¼ present in all cases); leaf compoundness (LC; 0 ¼
simple, 1¼ compound); dispersal syndrome (Dis; 0¼
abiotic, 1 ¼ biotic) and deciduousness (LD; 0 ¼
evergreen, 1 ¼ deciduous). Finally, seed volume (SV)
was obtained for 55 species as a proxy for seed mass by
measuring at least three (and in most cases ten) seeds
per individual from samples collected in the field,
obtained from the Herbarium at the Centro de
Investigación Científica de Yucatán, or from botanical
descriptions. Seed volume (SV) was calculated using
the formula of an ellipsoid.

2.5. Statistical analyses
We used a multinomial model based on estimated
species relative abundances (Chazdon et al 2011) to
identify generalist and specialist species, choosing a
conservative threshold of k ¼ 2/3, 40 points to define
boundaries among groups and a p value of 0.005, as
recommended by Chazdon et al (2011). Since the

multinomial model classifies species only between two
habitats, we performed two analyses, one considering
the successional gradient, and another considering the
topographical gradient. In the first analysis, abun-
dances of 118 species were compared in 158 young
(3–29 y-old) forest plots, versus 53 old-growth forest
(30–70 y-old) plots, both groups on flat areas. The
successional age limit for old-growth forest was based
on a previous finding that abandoned agricultural
fields in the Yucatan Peninsula recover a tree species
community indistinguishable from extant mature
forest in 25–30 years (Turner II et al 2001). The
second analysis compared abundances of 119 species
in forests on flat areas (106 plots) versus hills (63
plots). We excluded young forest plots from this
second analysis (<13 years), because in our study site
agriculture is established mainly on flat areas, and we
could not find enough replicates of young forests on
hills. The multinomial models were performed with
the vegan package (Oksanen et al 2016) in R software
(R Development Core Team 2015).

To characterize multivariate functional strategies
of the 65 most abundant species (for which functional
traits were determined), we performed a Principal
Component Analysis (PCA) on a species x traits
matrix (LA,MPU and PLwere log10 transformed).We
performed an ANOVA among specialists and general-
ists PCA scores and post hoc Tukey test to determine if
they showed different functional strategies, and
compared each trait among groups with Kruskall-
Wallis tests for continuous traits and X2 on absolute
frequencies for binary traits (Zar 1999). We also
calculated the relative abundance of specialists and
generalists per plot and performed a Kruskall-Wallis
analysis to determine if generalists dominated across
forest stand ages and topographic positions.

To analyze the turnover of dominating functional
strategies over the successional and topographical
gradients, we calculated community-weighted means
(hereafter CWM) for each trait, defined as the mean of
values present in the community (i.e. plot) weighed by
the relative abundance of taxa bearing each value
(Lavorel et al 2008), using the LD package (Laliberté
et al 2014) in R software.We then performed a PCA on
a plot x traits CWMmatrix. Since we had seed volume
data for only 55 species, we excluded this trait from
both PCA analyses. To determine if there were
significant differences in trait dominance (CWM)
among successional age and topographic position
classes, we performed non-parametric Kruskal-Wallis
tests and paired comparisons among three vegetation
classes (1) 3 to 15 years of secondary succession, (2) 16
to 24 years and (3) ≥ 25 years) and two topographic
positions (flat areas and hills) in InfoStat software (Di
Rienzo et al 2013). To evaluate how functional
dominance of plant strategies varied along secondary
succession, we used linear regression of the first two
axes of the CWM PCA on successional age. Finally, we
analyzed continuous variation of traits (CWM) with
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successional age by using heteroskedasticity-consistent
standard error (HCSE) regressions (HC3 version)
separately for plots on flat sites and on hills (online
supplementary figure S1, available at stacks.iop.org/
ERL/12/055004/mmedia), using the SPSS macro of
Hayes and Cai (2007) in SPSS v. 16.0.

3. Results

In the successional gradient, the multinomial model
classified three species as secondary forest specialists,
five as old-growth forest specialists, 35 as generalists
and 75 as too rare to classify with confidence.
According to topography, the model identified six

hill specialists, eight flat site specialists, 35 generalists
and 70 were too rare (table S1). Generalist species
dominated all successional ages and topographical
positions (p< 0.001, online supplementary figure S2).

Species strategies in the first two axes of PCA
(figure 1) showed the functional continuum of species
from acquisition to conservation of resources. The first
axis (which explained 28.1% of variation) was largely
related to the leaf and stem economics spectrum, as it
tended to separate acquisitive species with big
compound leaves (LA and LC), long petioles (PL),
high specific leaf area (SLA), low wood specific gravity
(WSG), low leaf dry matter content (LDMC) and
abiotic dispersal, from conservative, drought-resistant
species with opposite traits (table 1). The second axis
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Figure 1. PCA of species according to their functional traits. Symbols represent species classification by the multinomial model: G ¼
generalist; Old-growth ¼ old-growth forest specialist; Secondary ¼ secondary forest specialist; Hill ¼ hill specialist; Flat ¼ flat site
specialist; Too rare¼ too rare to classify with confidence, and Absent¼ species present in one gradient but not in the other. Functional
traits are the same as in table 1. Species (in italics and abbreviated) are in online supplementary table S1.

Table 1. Correlations of species traits and CWM with the first two principal components. Italics indicate non-significant correlations
(p ≥ 0.05). See eigenvector scores in online supplementary table S4.

Species CWM

Functional traits PC1 (28.1%) PC2 (22.7%) PC1 (28.7%) PC2 (22.2%)

WSG Wood specific gravity �0.61 �0.44 �0.72 0.58

LC Leaf compoundness (0 ¼ simple; 1 ¼ compound) 0.60 �0.63 0.63 0.48

Ex Plant exudates (0 ¼ absent; 1 ¼ present) 0.47 0.51 0.55 �0.54

Sp Plant spininess (0 ¼ absent; 1 ¼ present) 0.03 �0.34 0.09 0.62

Dis Dispersal syndrome (0 ¼ abiotic; 1 ¼ biotic) �0.61 0.37 �0.20 �0.77

LD Leaf deciduousness (0 ¼ evergreen; 1 ¼ deciduous) 0.42 �0.50 0.75 0.30

LPb Leaf pubescence (0 ¼ absent; 1 ¼ present) 0.22 0.09 0.04 0.14

LPulv Leaf pulvination (0 ¼ absent; 1 ¼ present) 0.30 �0.77 0.44 0.80

PL Petiole length 0.86 �0.01 0.88 �0.30

MPU Minimal photosynthetic unit 0.19 0.78 0.24 �0.36

LA Leaf area 0.86 �0.05 0.88 0.01

LDMC Leaf dry matter content �0.55 �0.61 �0.60 0.13

SLA Specific leaf area 0.43 0.24 0.14 0.29
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(which explained 23% of variation) was associated
with traits related to leaf temperature dissipation and
plant defense, as it separated conservative deciduous
species, mainly with compound leaves, high LDMC,
high WSG, very small MPU, pulvini and spines, from
more acquisitive species with mostly simple, perennial
leaves with high MPU and exudates.

Secondary forest specialists (which were all
legumes) differed from the other groups –although
only in the scores of the second PCA axis (F2,35¼ 6.63,
p ¼ 0.0036, first axis F2,35 ¼ 0.64, p ¼ 0.53), by traits
that favor an efficient use of water, such as smaller
MPU (compared to generalists, p ¼ 0.021) and the
presence of pulvini (compared to primary forest
specialists, p ¼ 0.028). Secondary forest specialist also
differed from generalists by the presence of spines (p¼
0.002) (see online supplementary tables S2 and S3).
Regarding topography, we found no differences
among groups either in PCA scores (first axis F2,39
¼ 0.42, p¼ 0.66 and second axis F2,39¼ 0.24, p¼ 0.79
respectively) or in traits (tables S2 y S3).

CWM showed that traits associated with light
capture and efficient use of water (leaf area,
compoundness, deciduousness, pulvination, petiole
length) had their highest values in young plots, and
decreased with successional age. Conversely, animal
seed dispersal, seed volume and LDMC increased
with successional age (figures 2, 3 and S1).
Considering only old-growth plots (figure 2), hills
had more species with pulvini, compound and
perennial leaves and spines, higher LDMC, WSG,
and lower leaf area, MPU, petiole length and leaf
pubescence than flat sites. When considering forest
stand age as a continuous variable (figure S1), SLA
increased with age on hills while exudates decreased
with age on flat sites and hills. Besides, PCA of
CWM (figure 3) and regressions of this PCA scores
(first two axes) on successional age (figure 4) showed
that acquisitive species are dominant at early stages
of succession, while more conservative drought
resistant species become dominant at latter succes-
sional ages. While leaf pulvination and spines are
mainly present in the youngest (3–15 year-old)
forest plots, exudates and animal seed dispersal
predominate at older plots on flat sites and represent
the main traits differentiating plots along the second
PCA axis (figures 3 and 4).

4. Discussion

4.1. Functional variation across the landscape
gradients
Our results show that patterns of plant functional
variation in the landscape are driven mostly by
generalist species as they dominate (in species number
and relative abundance) across successional ages and
topographic positions. This agrees with our first

prediction and may be due to the long history of
disturbance in this region (Rico-Gray and García-
Franco 1992, Mizrahi et al 1997, Dupuy et al 2012b),
and partly also due to the prevalence of earlier stages of
forest succession –158 out of 211 plots (75%) were in
young forests.

As described in previous studies for several plant
communities (Wright et al 2004, Chave et al 2009,
Reich 2014), and particularly in dry forests (Méndez-
Alonzo et al 2012, Lohbeck et al 2013, Buzzard et al
2016), species lifestyles are distributed along axes of
functional variation between acquisitive and conser-
vative strategies of resource use. Specialists in this
forest appear to be highly variable functionally, with
the exception of secondary forest specialists, which
were all bipinnate legumes. Reyes-García et al (2012)
found that large legumes in a TDF in Yucatan had
lower whole-tree water use than non-legume species
due to higher allocation to non-conductive heartwood
in legumes. Powers and Tiffin (2010) found in TDF of
Costa Rica that, compared to leaf-habit functional
types, legume tree species had a different suite of traits,
including high wood density, leaf nitrogen and leaf
carbon. In our study, legumes had higher WSG (mean
± SE: 0.784 ± 0.16) than non-legumes (0.694 ±
0.204), but the difference was not significant. Contrary
to our second prediction, generalist species were not
functionally closer to acquisitive or conservative
strategies; instead, they displayed the entire range of
variation between both extremes of the resource use
continuum (figure 1). This is intriguing and its
generality should be explored including forests with
higher levels of water limitation, where generalists are
expected to be conservative and drought resistant
species.

Our results did not support our third prediction:
that young forest stands and hills would share
conservative functional strategies since they represent
the driest habitats in the landscape. Patterns of trait
CWM showed that, unlike other dry forest (Buzzard
et al 2016), acquisitive species dominate in the
youngest plots (figures 2–4). Although dominant
species of young forests showed functional traits
associated with an efficient use of water (such as large
divided leaves with small leaflets, leaf pulvini or leaf
deciduousness), they also showed traits (long petioles
and large leaf area) associated with an increased
efficiency and area for light harvest (Takenaka 1994,
Niinemets et al 2004), as found previously in another
Mexican TDF (Lohbeck et al 2013). We concur with
Lohbeck et al (2013) who suggested that the number of
months without leaves and root depth may explain the
survival of species with cheap and large leaves in
tropical dry forests (Pineda-García et al 2013).

In contrast, species that dominated on hills
showed traits associated with a more water-limiting
environment, such as the smallest leaves (both in
terms of LA and MPU) with high LDMC, and the
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maximum WSG. This latter trait has been directly
associated with high resistance to cavitation, low water
storage capacity, and low hydraulic conductivity
(Santiago et al 2004, Ishida et al 2008, Markesteijn
et al 2011, Pineda-García et al 2013). These distinct
strategies of species dominating on hills vs young plots
suggest that conditions and resources differ between
these portions of the landscape; microenvironmental
studies are needed to assess this.

Late successional plots on flat sites also showed
more conservative species with small perennial leaves
of high LDMC. However, WSG was remarkably

similar along succession on flat sites (figures 2 and S1),
as also reported for TDF in Costa Rica (Becknell and
Powers 2014), but contrary to the lowerWSG found at
older stands in other Mexican TDF (Lebrija-Trejos
et al 2010, Lohbeck et al 2015). It is possible that, in
our study area, a fine scale heterogeneity of water
availability in the porous and soil-filled cavities in
limestone bedrock may allow local niche partitioning
of water (Querejeta et al 2007), and consequently the
coexistence of low and high wood density species with
different rooting strategies across succession, although
this also requires further investigation.
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4.2. Generalist species dominance does not mean
functional homogeneity in the landscape
Even though our results show that considering CWM
some ecological strategies are more abundant in
certain parts of the landscape, when considered
individually most of the species abundances are not
significantly different among successional ages or
topographic positions. These results indicate that there
are multiple ways to be a generalist, and suggest that
environmental conditions across the successional and
topographical gradient are not sufficiently different
compared to the range of conditions in which
generalist species can persist and become abundant.
However, we cannot discard the possibility that the
most influential factors affecting species filtering do
not respond to spatial environmental gradients.
Temporal variation of environmental resources and
conditions could have a more important role
determining plant reproduction and recruitment
(i.e. the storage effect; Warner and Chesson 1985),
which could result in the coexistence of distinctive

functional strategies independently of successional age
or topographical position.

Furthermore, according to local farmers, all 65
species included in our analyses are capable of
sprouting after slash-and-burn agriculture. Sprouting
is an important regeneration mechanism (Kamme-
sheidt 1999), especially in a context of recurrent, but
spatially patchy and low-intensity shifting cultivation,
as practiced for millennia in our study area. It remains
to be investigated if sprouting capacity is a key trait for
being a generalist, since sprouts have a well-developed
root system packed with reserves, which gives them a
competitive advantage over seedlings (Miller and
Kauffman 1998, Kennard et al 2002).

Finally, more sensitive statistical methods to
determine habitat specialization for rare species are
needed. It is possible that rare species could be highly
sensitive to environmental heterogeneity, while gener-
alist species may be largely tolerant and perhaps
common for that reason (Pitman et al 2001). Although
the multinomial method has been shown to be more
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sensitive than other methods in classifying specialist
species, and also detects generalists statistically (Chaz-
don et al 2011), it was unable to classify rare species that
represent over 50% of the species in our landscape.

5. Conclusions

Generalist species dominated across the successional
and topographic gradient, possibly reflecting the
millennial use of land in our studied landscape.
However, this did not produce a functional homoge-
nization, since there are many ways to be a generalist.
Further studies are needed to evaluate the generality of
these findings, especially considering the increasing
prevalence of human alterations of all ecosystems,
including tropical dry forests. In this study, species that
dominated early in succession had acquisitive func-
tional traits, while those that dominated at later
successional ages and hills showed more conservative
traits, even though almost all species can establish
along the complete environmental gradient. Further
analyses considering fine scale microenvironmental
differences (particularly soil-rock water availability),
other key traits such as rooting strategy or sprouting
capacity, and the temporal variability of favorable
conditions are required to understand community
assembly in these tropical dry forests. Finally, new
methods to determine habitat specialization for rare
species are needed, particularly for tropical forests and
other species-rich ecosystems, where most of the
species are represented by few individuals.
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