23 research outputs found

    The Simons Observatory Large Aperture Telescope Receiver

    Get PDF
    The Simons Observatory (SO) Large Aperture Telescope Receiver (LATR) will be coupled to the Large Aperture Telescope located at an elevation of 5,200 m on Cerro Toco in Chile. The resulting instrument will produce arcminute-resolution millimeter-wave maps of half the sky with unprecedented precision. The LATR is the largest cryogenic millimeter-wave camera built to date with a diameter of 2.4 m and a length of 2.6 m. It cools 1200 kg of material to 4 K and 200 kg to 100 mk, the operating temperature of the bolometric detectors with bands centered around 27, 39, 93, 145, 225, and 280 GHz. Ultimately, the LATR will accommodate 13 40 cm diameter optics tubes, each with three detector wafers and a total of 62,000 detectors. The LATR design must simultaneously maintain the optical alignment of the system, control stray light, provide cryogenic isolation, limit thermal gradients, and minimize the time to cool the system from room temperature to 100 mK. The interplay between these competing factors poses unique challenges. We discuss the trade studies involved with the design, the final optimization, the construction, and ultimate performance of the system

    CMB-S4

    Get PDF
    We describe the stage 4 cosmic microwave background ground-based experiment CMB-S4

    The Simons Observatory: Design, integration, and testing of the small aperture telescopes

    No full text
    International audienceThe Simons Observatory (SO) is a cosmic microwave background (CMB) survey experiment that includes small-aperture telescopes (SATs) observing from an altitude of 5,200 m in the Atacama Desert in Chile. The SO SATs will cover six spectral bands between 27 and 280 GHz to search for primordial B-modes to a sensitivity of σ(r)=0.002\sigma(r)=0.002, with quantified systematic errors well below this value. Each SAT is a self-contained cryogenic telescope with a 35^\circ field of view, 42 cm diameter optical aperture, 40 K half-wave plate, 1 K refractive optics, and 12,00012,000 TES detectors. We describe the nominal design of the SATs and present details about the integration and testing for one operating at 93 and 145 GHz

    The Simons Observatory: Design, integration, and testing of the small aperture telescopes

    No full text
    International audienceThe Simons Observatory (SO) is a cosmic microwave background (CMB) survey experiment that includes small-aperture telescopes (SATs) observing from an altitude of 5,200 m in the Atacama Desert in Chile. The SO SATs will cover six spectral bands between 27 and 280 GHz to search for primordial B-modes to a sensitivity of σ(r)=0.002\sigma(r)=0.002, with quantified systematic errors well below this value. Each SAT is a self-contained cryogenic telescope with a 35^\circ field of view, 42 cm diameter optical aperture, 40 K half-wave plate, 1 K refractive optics, and 12,00012,000 TES detectors. We describe the nominal design of the SATs and present details about the integration and testing for one operating at 93 and 145 GHz

    CMB-S4 Decadal Survey APC White Paper

    Get PDF
    International audienceWe provide an overview of the science case, instrument configuration and project plan for the next-generation ground-based cosmic microwave background experiment CMB-S4, for consideration by the 2020 Decadal Survey

    CMB-S4 Science Case, Reference Design, and Project Plan

    No full text
    We present the science case, reference design, and project plan for the Stage-4 ground-based cosmic microwave background experiment CMB-S4
    corecore