68 research outputs found

    Chemical Amelioration of Expansive Soils

    Get PDF
    Expansive soils swell when they absorb water and shrink when water evaporates from them. Hence, lightly loaded civil engineering structures found in these soils are subjected to severe distress. Therefore, there is a need to ameliorate or improve these swelling soils through some innovative methods. This paper discusses chemical stabilisation of expansive soils, a technique in which chemical reagents such as lime and calcium chloride are added to expansive soils to reduce the volumetric changes occurring in expansive soils and also to improve their engineering behaviour

    Chemical Amelioration of Expansive Soils

    Get PDF
    Expansive soils swell when they absorb water and shrink when water evaporates from them. Hence, lightly loaded civil engineering structures found in these soils are subjected to severe distress. Therefore, there is a need to ameliorate or improve these swelling soils through some innovative methods. This paper discusses chemical stabilisation of expansive soils, a technique in which chemical reagents such as lime and calcium chloride are added to expansive soils to reduce the volumetric changes occurring in expansive soils and also to improve their engineering behaviour

    Nuclei-specific hypothalamus networks predict a dimensional marker of stress in humans

    Get PDF
    The hypothalamus is part of the hypothalamic-pituitary-adrenal axis which activates stress responses through release of cortisol. It is a small but heterogeneous structure comprising multiple nuclei. In vivo human neuroimaging has rarely succeeded in recording signals from individual hypothalamus nuclei. Here we use human resting-state fMRI (n = 498) with high spatial resolution to examine relationships between the functional connectivity of specific hypothalamic nuclei and a dimensional marker of prolonged stress. First, we demonstrate that we can parcellate the human hypothalamus into seven nuclei in vivo. Using the functional connectivity between these nuclei and other subcortical structures including the amygdala, we significantly predict stress scores out-of-sample. Predictions use 0.0015% of all possible brain edges, are specific to stress, and improve when using nucleus-specific compared to whole-hypothalamus connectivity. Thus, stress relates to connectivity changes in precise and functionally meaningful subcortical networks, which may be exploited in future studies using interventions in stress disorders

    A systematic review of the association between dementia risk factors and cerebrovascular reactivity

    Get PDF
    Cumulative evidence suggests that impaired cerebrovascular reactivity (CVR), a regulatory response critical for maintaining neuronal health, is amongst the earliest pathological changes in dementia. However, we know little about how CVR is affected by dementia risk, prior to disease onset. Understanding this relationship would improve our knowledge of disease pathways and help inform preventative interventions. This systematic review investigates 59 studies examining how CVR (measured by magnetic resonance imaging) is affected by modifiable, non-modifiable, and clinical risk factors for dementia. We report that non-modifiable risk (older age and apolipoprotein ε4), some modifiable factors (diabetes, traumatic brain injury, hypertension) and some clinical factors (stroke, carotid artery occlusion, stenosis) were consistently associated with reduced CVR. We also note a lack of conclusive evidence on how other behavioural factors such as physical inactivity, obesity, or depression, affect CVR. This review explores the biological mechanisms underpinning these brain-behaviour associations, highlights evident gaps in the literature, and identifies the risk factors that could be managed to preserve CVR in an effort to prevent dementia

    The lifetime accumulation of multimorbidity and its influence on dementia risk: a UK Biobank study

    Get PDF
    The number of people living with dementia worldwide is projected to reach 150 million by 2050, making prevention a crucial priority for health services. The co-occurrence of two or more chronic health conditions, termed multimorbidity, occurs in up to 80% of dementia patients, raising the potential of multimorbidity as an important risk factor for dementia. However, precise understanding of which specific conditions, as well as their age of onset, drive the link between multimorbidity and dementia is unclear. We defined the patterns of accumulation of 46 chronic conditions over their lifetime in 282,712 individuals from the UK Biobank. By grouping individuals based on their life-history of chronic illness, we show here that risk of incident dementia can be stratified by both the type and timing of their accumulated chronic conditions. We identified several distinct clusters of multimorbidity, and their associated risks varied in an age-specific manner. Compared to low multimorbidity, cardiometabolic and neurovascular conditions acquired before 55 years were most strongly associated with dementia. Acquisition of mental health and neurovascular conditions between the ages of 55 and 70 was associated with an over two-fold increase in dementia risk compared to low multimorbidity. The age-dependent role of multimorbidity in predicting dementia risk could be used for early stratification of individuals into high and low risk groups and inform targeted prevention strategies based on a person’s prior history of chronic disease

    Effect of apolipoprotein E polymorphism on cognition and brain in the Cambridge Centre for Ageing and Neuroscience cohort.

    Get PDF
    Polymorphisms in the apolipoprotein E (APOE) gene have been associated with individual differences in cognition, brain structure and brain function. For example, the ε4 allele has been associated with cognitive and brain impairment in old age and increased risk of dementia, while the ε2 allele has been claimed to be neuroprotective. According to the 'antagonistic pleiotropy' hypothesis, these polymorphisms have different effects across the lifespan, with ε4, for example, postulated to confer benefits on cognitive and brain functions earlier in life. In this stage 2 of the Registered Report - https://osf.io/bufc4, we report the results from the cognitive and brain measures in the Cambridge Centre for Ageing and Neuroscience cohort (www.cam-can.org). We investigated the antagonistic pleiotropy hypothesis by testing for allele-by-age interactions in approximately 600 people across the adult lifespan (18-88 years), on six outcome variables related to cognition, brain structure and brain function (namely, fluid intelligence, verbal memory, hippocampal grey-matter volume, mean diffusion within white matter and resting-state connectivity measured by both functional magnetic resonance imaging and magnetoencephalography). We found no evidence to support the antagonistic pleiotropy hypothesis. Indeed, Bayes factors supported the null hypothesis in all cases, except for the (linear) interaction between age and possession of the ε4 allele on fluid intelligence, for which the evidence for faster decline in older ages was ambiguous. Overall, these pre-registered analyses question the antagonistic pleiotropy of APOE polymorphisms, at least in healthy adults

    The association of longitudinal diet and waist-to-hip ratio from midlife to old age with hippocampus connectivity and memory in old age: a cohort study

    Get PDF
    Epidemiological studies suggest lifestyle factors may reduce the risk of dementia. However, few studies have examined the association of diet and waist-to-hip ratio with hippocampus connectivity. In the Whitehall II Imaging Sub-study, we examined longitudinal changes in diet quality in 512 participants and waist-to-hip ratio in 665 participants. Diet quality was measured using the Alternative Health Eating Index-2010 assessed three times across 11 years between ages 48 and 60 years, and waist-to-hip ratio five times over 21 years between ages 48 and 68 years. Brain imaging and cognitive tests were performed at age 70±5 years. We measured white matter using diffusion tensor imaging and hippocampal functional connectivity using resting-state functional magnetic resonance imaging. In addition to associations of diet and waist-to-hip ratio with brain imaging measures, we tested whether associations between diet, waist-to-hip ratio and cognitive performance were mediated by brain connectivity. We found better diet quality in midlife and improvements in diet over mid-to-late life were associated with higher hippocampal functional connectivity to the occipital lobe and cerebellum, and better white matter integrity as measured by higher fractional anisotropy and lower diffusivity. Higher waist-to-hip ratio in midlife was associated with higher mean and radial diffusivity and lower fractional anisotropy in several tracts including the inferior longitudinal fasciculus and cingulum. Associations between midlife waist-to-hip ratio, working memory and executive function were partially mediated by radial diffusivity. All associations were independent of age, sex, education, and physical activity. Our findings highlight the importance of maintaining a good diet and a healthy waist-to-hip ratio in midlife to maintain brain health in later life. Future interventional studies for the improvement of dietary and metabolic health should target midlife for the prevention of cognitive decline in old age

    Distinct resting-state functional connections associated with episodic and visuospatial memory in older adults.

    Get PDF
    Episodic and spatial memory are commonly impaired in ageing and Alzheimer's disease. Volumetric and task-based functional magnetic resonance imaging (fMRI) studies suggest a preferential involvement of the medial temporal lobe (MTL), particularly the hippocampus, in episodic and spatial memory processing. The present study examined how these two memory types were related in terms of their associated resting-state functional architecture. 3T multiband resting state fMRI scans from 497 participants (60-82 years old) of the cross-sectional Whitehall II Imaging sub-study were analysed using an unbiased, data-driven network-modelling technique (FSLNets). Factor analysis was performed on the cognitive battery; the Hopkins Verbal Learning test and Rey-Osterreith Complex Figure test factors were used to assess verbal and visuospatial memory respectively. We present a map of the macroscopic functional connectome for the Whitehall II Imaging sub-study, comprising 58 functionally distinct nodes clustered into five major resting-state networks. Within this map we identified distinct functional connections associated with verbal and visuospatial memory. Functional anticorrelation between the hippocampal formation and the frontal pole was significantly associated with better verbal memory in an age-dependent manner. In contrast, hippocampus-motor and parietal-motor functional connections were associated with visuospatial memory independently of age. These relationships were not driven by grey matter volume and were unique to the respective memory domain. Our findings provide new insights into current models of brain-behaviour interactions, and suggest that while both episodic and visuospatial memory engage MTL nodes of the default mode network, the two memory domains differ in terms of the associated functional connections between the MTL and other resting-state brain networks

    5-HT<sub>4</sub> Receptor Agonist Effects on Functional Connectivity in the Human Brain:Implications for Procognitive Action

    Get PDF
    Background: Cognitive deficits are often comorbid with mood disorders and can cause significant functional impairment even after resolution of the primary mood symptoms. We do not currently have pharmacological treatments that adequately address these deficits. 5-HT4 receptor agonists show promise as potential procognitive agents in animal and early human translational studies. Optimal cognitive performance in humans is directly associated with appropriate functional connectivity between specific resting-state neural networks. However, so far the effect of 5-HT4 receptor agonism on resting-state functional connectivity (rsFC) in the brain in humans is unknown.Methods: We collected resting-state functional magnetic resonance imaging scans from 50 healthy volunteers, of whom 25 received 6 days × 1 mg prucalopride (a highly selective 5-HT4 receptor agonist) and 25 received placebo in a randomized double-blind design.Results: Network analyses identified that participants in the prucalopride group had enhanced rsFC between the central executive network and the posterior/anterior cingulate cortex. Seed analyses also showed greater rsFC between the left and right rostral anterior cingulate cortex and the left lateral occipital cortex, and reduced rsFC between the hippocampus and other default mode network regions.Conclusions: Similar to other potentially procognitive medications, low-dose prucalopride in healthy volunteers appeared to enhance rsFC between regions involved in cognitive networks and reduce rsFC within the default mode network. This suggests a mechanism for the behavioral cognitive enhancement previously seen with 5-HT4 receptor agonists in humans and supports the potential for 5-HT4 receptor agonists to be used in clinical psychiatric populations

    Effect of age and the APOE gene on metabolite concentrations in the posterior cingulate cortex.

    Get PDF
    Proton magnetic resonance spectroscopy (1H-MRS) has provided valuable information about the neurochemical profile of Alzheimer's disease (AD). However, its clinical utility has been limited in part by the lack of consistent information on how metabolite concentrations vary in the normal aging brain and in carriers of apolipoprotein E (APOE) ε4, an established risk gene for AD. We quantified metabolites within an 8cm3 voxel within the posterior cingulate cortex (PCC)/precuneus in 30 younger (20-40 years) and 151 cognitively healthy older individuals (60-85 years). All 1H-MRS scans were performed at 3T using the short-echo SPECIAL sequence and analyzed with LCModel. The effect of APOE was assessed in a sub-set of 130 volunteers. Older participants had significantly higher myo-inositol and creatine, and significantly lower glutathione and glutamate than younger participants. There was no significant effect of APOE or an interaction between APOE and age on the metabolite profile. Our data suggest that creatine, a commonly used reference metabolite in 1H-MRS studies, does not remain stable across adulthood within this region and therefore may not be a suitable reference in studies involving a broad age-range. Increases in creatine and myo-inositol may reflect age-related glial proliferation; decreases in glutamate and glutathione suggest a decline in synaptic and antioxidant efficiency. Our findings inform longitudinal clinical studies by characterizing age-related metabolite changes in a non-clinical sample
    • …
    corecore