146 research outputs found

    Book Reviews

    Get PDF
    Book Review 1Book Title: Developments in Numerical EcologyBook Authors: Edited by P. Legendre & L. LegendreSpringer-Verlag, Berlin, 1987. 585 pp., 107 figures.Book Review 2Book Title: Parasitic ProtozoaBook Authors: J.P. Kreier & J.R. BakerAllen and Unwin, Boston. 241 pages

    Soil compaction and surface-active arthropods in historic, agricultural, alien, and recovering vegetation

    Get PDF
    Soil compaction is a major threat to natural resources. However, little information is available on the impacts of soil compaction on arthropod diversity especially relative to different types of vegetation, land use and restoration activities. In response to this dearth of information, we studied soil compaction, as well as percentage soil moisture and mean leaf litter depth, associated with four vegetation types: natural vegetation (fynbos, the historic condition), agricultural land (vineyards), invasive alien trees, and vegetation cleared of invasive alien trees (recovering vegetation). Our study took place in the Cape Floristic Region, South Africa, a biodiversity hotspot, yet also an area of intense viticulture and heavy invasion by alien plants. We sampled soil surface-active arthropods using pitfall traps, and compared species richness and abundance in different vegetation types with various levels of soil compaction and other soil variables. Overall, vineyards had the highest soil compaction while natural fynbos and aliens had low and comparable compaction. For both arthropod species richness and abundance, the order of the four vegetation types was, from highest to lowest: natural fynbos, alien cleared sites, vineyards, and alien infested sites. Level of soil compaction negatively correlated with arthropod species richness but not with abundance. Neither soil moisture nor leaf litter depth on their own significantly affected arthropod species richness or abundance. While alien trees overall had a strong negative effect on both arthropod species richness and abundance, and much more so than vineyards, the situation is reversible, with removal of aliens being associated with rapid recovery of soil structure and of arthropod assemblages. This is an encouraging sign for restoration

    Saving a tropical ecosystem from a destructive ant-scale (Pheidole megacephala, Pulvinaria urbicola) mutualism with support from a diverse natural enemy assemblage

    Get PDF
    Ants can disrupt the natural biological control of serious hemipteran pests by interfering with natural enemies, resulting in a change in ecosystem functioning. We focus here on interference by a highly invasive ant Pheidole megacephala on the regulation of a tree destroying hemipteran scale insect Pulvinaria urbicola on Cousine Island in the Seychelles archipelago, a tropical island ecosystem. We show how a diverse natural enemy assemblage contributes substantially to the collapse of the ant-scale mutualism following managed ant suppression. Natural enemy abundance and species richness increased significantly after ant suppression, with varying responses among the different functional guilds. Primary parasitoids coexisted with tending ants before ant suppression, but could not regulate the enormously high scale densities alone. After ant suppression, a significant increase in predators caused a collapse of the scale population. Guilds external to the mutualism were also affected, with primary parasitoids of various non-hemipteran taxa also increasing, which contributed significantly to the recovery of the community to its pre-invasion composition. Our results highlight the far-reaching and pervasive effects of the hemipteran-tending invasive ant within the natural enemy assemblage. In turn, we also illustrate the potential to restore the tropical ecosystem by encouraging an array of natural enemies through precision management of the ant

    Precision control of an invasive ant on an ecologically sensitive tropical island: a principle with wide applicability

    Get PDF
    Effective management of invasive ants is an important priority for many conservation programs but can be difficult to achieve, especially within ecologically sensitive habitats. This study assesses the efficacy and nontarget risk of a precision ant baiting method aiming to reduce a population of the invasive big-headed ant Pheidole megacephala on a tropical island of great conservation value. Area-wide application of a formicidal bait, delivered in bait stations, resulted in the rapid decline of 8 ha of P. megacephala. Effective suppression remained throughout the succeeding 11-month monitoring period. We detected no negative effects of baiting on nontarget arthropods. Indeed, species richness of nontarget ants and abundance of other soil-surface arthropods increased significantly after P. megacephala suppression. This bait station method minimized bait exposure to nontarget organisms and was cost effective and adaptable to target species density. However, it was only effective over short distances and required thorough bait placement. This method would therefore be most appropriate for localized P. megacephala infestations where the prevention of nontarget impacts is essential. The methodology used here would be applicable to other sensitive tropical environments.This work was funded by DST-NRF Centre of Excellence for Invasion Biology (C‱I‱B) and the Working for Water Programme through their collaborative research project on “Integrated Management of Invasive Alien Species”

    White-faced Darter distribution is associated with coniferous forests in Great Britain

    Get PDF
    Abstract 1) Understanding of dragonfly distributions is often geographically comprehensive but less so in ecological terms. 2) White-faced darter (Leucorhinnia dubia) is a lowland peatbog specialist dragonfly which has experienced population declines in Great Britain. White-faced darter are thought to rely on peat-rich pool complexes within woodland but this has not yet been empirically tested. 3) We used dragonfly recording data collected by volunteers of the British Dragonfly Society from 2005 to 2018 to model habitat preference for white-faced darter using species distribution models across Great Britain and, with a more detailed landcover dataset, specifically in the North of Scotland. 4) Across the whole of Great Britain our models used the proportion of coniferous forest within 1km as the most important predictor of habitat suitability but were not able to predict all current populations in England. 5) In the North of Scotland our models were more successful and suggest that habitats characterised by native coniferous forest and areas high potential evapotranspiration represent the most suitable habitat for white-faced darter. 6) We recommend that future white-faced darter monitoring should be expanded to include areas currently poorly surveyed but with high suitability in the North of Scotland. 7) Our results also suggest that white-faced darter management should concentrate on maintaining Sphagnum rich pool complexes and the maintenance and restoration of native forests in which these pool complexes occur

    Critical response from Professor Michael J. Samways

    No full text
    [No abstract available]Not
    • 

    corecore