62 research outputs found

    Mikrosfere ropinirol hidroklorida za polagano oslobađanje: Utjecaj procesnih parametara

    Get PDF
    An emulsion solvent evaporation method was employed to prepare microspheres of ropinirole hydrochloride, a highly water soluble drug, by using ethylcellulose and PEG with the help of 32 full factorial design. The microspheres were made by incorporating the drug in a polar organic solvent, which was emulsified using liquid paraffin as an external oil phase. Effects of various process parameters such as viscosity of the external phase, selection of the internal phase, surfactant selection and selection of stirring speed were studied. Microspheres were evaluated for product yield, encapsulation efficiency and particle size. Various drug/ethylcellulose ratios and PEG concentrations were assayed. In vitro dissolution profiles showed that ethylcellulose microspheres were able to control release of the drug for a period of 12 h.Mikrosfere ropinirol hidroklorida, ljekovite tvari vrlo dobro topljive u vodi, pripravljene su metodom isparavanja otapala, koristeći etilcelulozu i PEG te 32 potpuno faktorijalno dizajniranje. Mikrosfere su pripravljene na sljedeći način: otopina ljekovite tvari u polarnom organskom otapalu emulgirana je s tekućim parafinom kao vanjskom uljnom fazom. Ispitivan je utjecaj različitih procesnih parametara poput viskoznosti vanjske faze, vrste interne faze i površinski aktivne tvari te brzine miješanja. Za pripravljene mikrosfere određeno je iskorištenje, učinkovitost inkapsuliranja i veličina čestica. Isprobavani su različiti odnosi ljekovite tvari i etilceluloze te koncentracija PEG-a. In vitro pokusi su pokazali da je oslobađanje ljekovite tvari kontrolirano tijekom 12 h

    Early onset of Chanarin-Dorfman syndrome with severe liver involvement in a patient with a complex rearrangement of ABHD5 promoter

    Get PDF
    BACKGROUND: \u3b1/\u3b2-hydrolase domain-containing protein 5 (ABHD5) plays an important role in the triacylglycerols (TAG) hydrolysis. Indeed, ABHD5 is the co-activator of adipose triglyceride lipase (ATGL), that catalyses the initial step of TAG hydrolysis. Mutations in ABHD5 gene are associated with the onset of Chanarin-Dorfman syndrome (CDS), a rare autosomal recessive lipid storage disorder, characterized by non-bullous congenital ichthyosiform erythroderma (NCIE), hepatomegaly and liver steatosis. CASE PRESENTATION: We describe here a 5-years-old Brazilian child who presented with NCIE at birth and diffuse micro and macro-vesicular steatosis on liver biopsy since she was 2 years old. Molecular analysis of coding sequence and putative 5' regulatory region of ABHD5 gene was performed. A homozygous novel deletion, affecting the promoter region and the exon 1, was identified, confirming the suspected diagnosis of CDS for this patient. RT-PCR analysis showed that the genomic rearrangement completely abolished the ABHD5 gene expression in the patient, while only a partial loss of expression was detected in her parents. This is the first report describing the identification of a large deletion encompassing the promoter region of ABHD5 gene. The total loss of ABHD5 expression may explain the early onset of CDS and the severe liver involvement. After molecular diagnosis, the patient started a special diet, poor in fatty acids with medium chain triglycerides (MCT), and showed hepatic and dermatologic improvement in spite of severe molecular defect. CONCLUSIONS: This case report extends the spectrum of disease-causing ABHD5 mutations in CDS providing evidence for a novel pathogenic mechanism for this rare disorder. Moreover, our preliminary data show that early diagnosis and prompt treatment of neutral lipid accumulation might be useful for CD patients

    Topobiology of Human Pigmentation: P-Cadherin Selectively Stimulates Hair Follicle Melanogenesis.

    No full text
    P-cadherin serves as a major topobiological cue in mammalian epithelium. In human hair follicles (HFs), it is prominently expressed in the inner hair matrix that harbors the HF pigmentary unit. However, the role of P-cadherin in normal human pigmentation remains unknown. Since patients with mutations in the gene that encodes P-cadherin show hypotrichosis and fair hair, we explored the hypothesis that P-cadherin may control HF pigmentation. When P-cadherin was silenced in melanogenically active organ-cultured human scalp HFs, this significantly reduced HF melanogenesis and tyrosinase activity as well as gene and/or protein expression of gp100, stem cell factor, c-Kit, and microphthalmia-associated transcription factor (MITF), both in situ and in isolated human HF melanocytes. Instead, epidermal pigmentation was unaffected by P-cadherin knockdown in organ-cultured human skin. In hair matrix keratinocytes, P-cadherin silencing reduced plasma membrane beta-catenin, while glycogen synthase kinase 3 beta (GSK3beta) and phospho-beta-catenin expression were significantly upregulated. This suggests that P-cadherin-GSK3beta/Wnt signaling is required for maintaining expression of MITF to sustain intrafollicular melanogenesis. Thus, P-cadherin-mediated signaling is a melanocyte subtype-specific topobiological regulator of normal human pigmentation, possibly via GSK3beta-mediated canonical Wnt signaling.Journal of Investigative Dermatology accepted article preview online, 18 January 2013; doi:10.1038/jid.2013.18
    corecore