138 research outputs found

    Experimental study of the Ca2 1S+1S asymptote

    Get PDF
    The filtered laser excitation technique was applied for measuring transition frequencies of the Ca2_2 B-X system from asymptotic levels of the X1Σg+^1\Sigma_{\mathrm g}^{+} ground state reaching v=38v''=38. That level has an outer classical turning point of about 20~\AA which is only 0.2 \rcm below the molecular 1^1S+1+^1S asymptote. Extensive analysis of the spectroscopic data, involving Monte Carlo simulation, allowed for a purely experimental determination of the long range parameters of the potential energy curve. The possible values of the s-wave scattering length could be limited to be between 250a0a_0 and 1000a0a_0.Comment: 10 pages, 7 figure

    Профессору В. А. Силичу - 60 лет

    Get PDF
    23 октября 2006 г. исполнилось 60 лет со дня рождения доктора технических наук, профессора Виктора Алексеевича Силича

    Light forces in ultracold photoassociation

    Get PDF
    We study the time-resolved photoassociation of ultracold sodium in an optical dipole trap. The photoassociation laser excites pairs of atoms to molecular states of large total angular momentum at high intensities (above 20 kW/cm2^{2}). Such transitions are generally suppressed at ultracold temperatures by the centrifugal barriers for high partial waves. Time-resolved ionization measurements reveal that the atoms are accelerated by the dipole potential of the photoassociation beam. We change the collision energy by varying the potential depth, and observe a strong variation of the photoassociation rate. These results demonstrate the important role of light forces in cw photoassociation at high intensities.Comment: 7 pages, 3 figure

    Parametrization of the Hybrid Potential for Pairs of Neutral Atoms

    Full text link
    The hybrid form is a combination of the Rydberg potential and the London inverse-sixth-power energy. It is accurate at all relevant distance scales and simple enough for use in all-atom simulations of biomolecules. One may compute the parameters of the hybrid potential for the ground state of a pair of neutral atoms from their internuclear separation, the depth and curvature of their potential at its minimum, and from their van der Waals coefficient of dispersion.Comment: 7 pages, 11 figures, includes lithium, sodium, & potassium dimers, minor correction

    Spectroscopy of the a^3\Sigma_u^+ state and the coupling to the X^1\Sigma_g^+ state of K_2

    Full text link
    We report on high resolution Fourier-transform spectroscopy of fluorescence to the a^3\Sigma_u^+ state excited by two-photon or two-step excitation from the X^1\Sigma_g^+ state to the 2^3\Pi_g state in the molecule K_2. These spectroscopic data are combined with recent results of Feshbach resonances and two-color photoassociation spectra for deriving the potential curves of X^1\Sigma_g^+ and a^3\Sigma_u^+ up to the asymptote. The precise relative position of the triplet levels with respect of the singlet levels was achieved by including the excitation energies from the X^1\Sigma_g^+ state to the 2^3\Pi_g state and down to the a^3\Sigma_u^+ state in the simultaneous fit of both potentials. The derived precise potential curves allow for reliable modeling of cold collisions of pairs of potassium atoms in their ^2S ground state

    Effective potentials for atom-atom interaction at low temperatures

    Full text link
    We discuss the concept and design of effective atom-atom potentials that accurately describe any physical processes involving only states around the threshold. The existence of such potentials gives hope to a quantitative, and systematic, understanding of quantum few-atom and quantum many-atom systems at relatively low temperatures.Comment: 4 pages, 4 figure

    Measurement of the Zero Crossing in a Feshbach Resonance of Fermionic 6-Li

    Full text link
    We measure a zero crossing in the scattering length of a mixture of the two lowest hyperfine states of 6-Li. To locate the zero crossing, we monitor the decrease in temperature and atom number arising from evaporation in a CO2 laser trap as a function of magnetic field B. The temperature decrease and atom loss are minimized for B=528(4) G, consistent with no evaporation. We also present preliminary calculations using potentials that have been constrained by the measured zero crossing and locate a broad Feshbach resonance at approximately 860 G, in agreement with previous theoretical predictions. In addition, our theoretical model predicts a second and much narrower Feshbach resonance near 550 G.Comment: Five pages, four figure

    Self-consistent model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps

    Get PDF
    We consider the problem of cold atomic collisions in tight traps, where the absolute scattering length may be larger than the trap size. As long as the size of the trap ground state is larger than a characteristic length of the van der Waals potential, the energy eigenvalues can be computed self-consistently from the scattering amplitude for untrapped atoms. By comparing with the exact numerical eigenvalues of the trapping plus interatomic potentials, we verify that our model gives accurate eigenvalues up to milliKelvin energies for single channel s-wave scattering of 23^{23}Na atoms in an isotropic harmonic trap, even when outside the Wigner threshold regime. Our model works also for multi-channel scattering, where the scattering length can be made large due to a magnetically tunable Feshbach resonance.Comment: 7 pages, 4 figures (PostScript), submitted to Physical Review
    corecore