413 research outputs found

    Prograde and retrograde history of eclogites from the Eastern Blue Ridge, North Carolina, USA

    Full text link
    The prograde metamorphism of eclogites is typically obscured by chemical equilibration at peak conditions and by partial requilibration during retrograde metamorphism. Eclogites from the Eastern Blue Ridge of North Carolina retain evidence of their prograde path in the form of inclusions preserved in garnet. These eclogites, from the vicinity of Bakersville, North Carolina, USA are primarily comprised of garnet–clinopyroxene–rutile–hornblende–plagioclase–quartz. Quartz, clinopyroxene, hornblende, rutile, epidote, titanite and biotite are found as inclusions in garnet cores. Included hornblende and clinopyroxene are chemically distinct from their matrix counterparts. Thermobarometry of inclusion sets from different garnets record different conditions. Inclusions of clinozoisite, titanite, rutile and quartz (clinozoisite + titanite = grossular + rutile + quartz + H 2 O) yield pressures (6–10 kbar, 400–600 °C and 8–12 kbar 450–680 °C) at or below the minimum peak conditions from matrix phases (10–13 kbar at 600–800 °C). Inclusions of hornblende, biotite and quartz give higher pressures (13–16 kbar and 630–660 °C). Early matrix pyroxene is partially or fully broken down to a diopside–plagioclase symplectite, and both garnet and pyroxene are rimmed with plagioclase and hornblende. Hypersthene is found as a minor phase in some diopside + plagioclase symplectites, which suggests retrogression through the granulite facies. Two-pyroxene thermometry of this assemblage gives a temperature of c. 750 °C. Pairing the most Mg-rich garnet composition with the assemblage plagioclase–diopside–hypersthene–quartz gives pressures of 14–16 kbar at this temperature. The hornblende–plagioclase–garnet rim–quartz assemblage yields 9–12 kbar and 500–550 °C. The combined P–T data show a clockwise loop from the amphibolite to eclogite to granulite facies, all of which are overprinted by a texturally late amphibolite facies assemblage. This loop provides an unusually complete P–T history of an eclogite, recording events during and following subduction and continental collision in the early Palaeozoic.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73522/1/j.1525-1314.2003.00479.x.pd

    Mitigation of Polystyrene Microsphere Surface Contamination for Wind Tunnel Applications

    Get PDF
    Polystyrene latex (PSL) microspheres have been utilized as seed material for flow visualization in wind tunnels. However, PSL microspheres have been observed to strongly adhere to wind tunnel and model surfaces. Surface contamination on the cleaning screens that remove vorticity and provide laminar flow in the test section, is particularly problematic. Agglomeration of particles on these screens cause constriction of the airflow through the screen resulting in inconsistent airflow properties in the test section. The adhesion mechanism of PSL microspheres to wind tunnel screens and 316 stainless steel flat plates, were evaluated in a contamination apparatus where small sections of screen material were exposed to PSL-seeded airflow. Using a design of experiments (DOE) methodology airflow seeding parameters were changed to evaluate how these modifications affected the degree of surface contamination. The solution composition, comprised of ethanol and water, was determined to be the most significant factor in particle adhesion. Utilizing image analysis software, data were collected from the contaminated surfaces and incorporated to generate predictive particle contamination models. A relationship was identified between the solvent evaporation rate, and the morphology and magnitude of PSL contaminants on the test surfaces. This analysis can be extended to other solvent mixtures to provide insight into simultaneously improving wind tunnel testing capabilities while diminishing facility contamination

    Quantum information cannot be completely hidden in correlations: implications for the black-hole information paradox

    Full text link
    The black-hole information paradox has fueled a fascinating effort to reconcile the predictions of general relativity and those of quantum mechanics. Gravitational considerations teach us that black holes must trap everything that falls into them. Quantum mechanically the mass of a black hole leaks away as featureless (Hawking) radiation, but if the black hole vanishes, where is the information about the matter that made it? We treat the states of the in-fallen matter quantum mechanically and show that the black-hole information paradox becomes more severe. Our formulation of the paradox rules out one of the most conservative resolutions: that the state of the in-falling matter might be hidden in correlations between semi-classical Hawking radiation and the internal states of the black hole. As a consequence, either unitarity or Hawking's semi-classical predictions must break down. Any resolution of the black-hole information crisis must elucidate one of these possibilities.Comment: We first obtained this result two years ag

    Tatajuba: exploring the distribution of homopolymer tracts.

    Get PDF
    Length variation of homopolymeric tracts, which induces phase variation, is known to regulate gene expression leading to phenotypic variation in a wide range of bacterial species. There is no specialized bioinformatics software which can, at scale, exhaustively explore and describe these features from sequencing data. Identifying these is non-trivial as sequencing and bioinformatics methods are prone to introducing artefacts when presented with homopolymeric tracts due to the decreased base diversity. We present tatajuba, which can automatically identify potential homopolymeric tracts and help predict their putative phenotypic impact, allowing for rapid investigation. We use it to detect all tracts in two separate datasets, one of Campylobacter jejuni and one of three Bordetella species, and to highlight those tracts that are polymorphic across samples. With this we confirm homopolymer tract variation with phenotypic impact found in previous studies and additionally find many more with potential variability. The software is written in C and is available under the open source licence GNU GPLv3

    Simultaneous MQMAS NMR experiments for two half-integer quadrupolar nuclei

    Get PDF
    A procedure to acquire two Multiple-Quantum Magic Angle Spinning (MQMAS) NMR experiments with the same instrument time is presented. A triply tuned probe is utilized with multiple receivers to collect data with staggered acquisitions and thus more efficiently use the instrument time. The data for one nucleus is collected during the recovery delay of the other nucleus, and vice versa. The instrument time is reduced to 60-80% of the time needed for the single acquisition collection Specifically our approach is presented for recording triple-quantum (3Q) 17O and either 3Q or quintuple-quantum (5Q) 27Al MAS NMR spectra of a 1.18Na2O•5SiO2•Al2O3 glass gel

    Bargmann invariants and off-diagonal geometric phases for multi-level quantum systems -- a unitary group approach

    Get PDF
    We investigate the geometric phases and the Bargmann invariants associated with a multi-level quantum systems. In particular, we show that a full set of `gauge-invariant' objects for an nn-level system consists of nn geometric phases and 1/2(n1)(n2){1/2}(n-1)(n-2) algebraically independent 4-vertex Bargmann invariants. In the process of establishing this result we develop a canonical form for U(n) matrices which is useful in its own right. We show that the recently discovered `off-diagonal' geometric phases [N. Manini and F. Pistolesi, Phys. Rev. Lett. 8, 3067 (2000)] can be completely analysed in terms of the basic building blocks developed in this work. This result liberates the off-diagonal phases from the assumption of adiabaticity used in arriving at them.Comment: 13 pages, latex, no figure

    The complex evolutionary history and phylogeography of Caridina typus (Crustacea: Decapoda): long-distance dispersal and cryptic allopatric species

    Get PDF
    The evolutionary history of the old, diverse freshwater shrimp genus Caridina is still poorly understood, despite its vast distribution – from Africa to Polynesia. Here, we used nuclear and mitochondrial DNA to infer the phylogeographic and evolutionary history of C. typus, which is one of only four species distributed across the entire range of the genus. Despite this species’ potential for high levels of gene flow, questions have been raised regarding its phylogeographic structure and taxonomic status. We identified three distinct lineages that likely diverged in the Miocene. Molecular dating and ancestral range reconstructions are congruent with C. typus’ early dispersal to Africa, possibly mediated by the Miocene Indian Ocean Equatorial Jet, followed by back dispersal to Australasia after the Jet’s closure. Furthermore, several different species delimitation methods indicate each lineage represents a distinct (cryptic) species, contradicting current morphospecies delimitation of a single C. typus taxon. The evolutionary history of C. typus lineages is complex, in which ancient oceanic current systems and (currently unrecognised) speciation events preceded secondary sympatry of these cryptic species

    Allosteric Inhibition of Human Ribonucleotide Reductase by dATP Entails the Stabilization of a Hexamer

    Get PDF
    Ribonucleotide reductases (RNRs) are responsible for all de novo biosynthesis of DNA precursors in nature by catalyzing the conversion of ribonucleotides to deoxyribonucleotides. Because of its essential role in cell division, human RNR is a target for a number of anticancer drugs in clinical use. Like other class Ia RNRs, human RNR requires both a radical-generation subunit (β) and nucleotide-binding subunit (α) for activity. Because of their complex dependence on allosteric effectors, however, the active and inactive quaternary forms of many class Ia RNRs have remained in question. Here, we present an X-ray crystal structure of the human α subunit in the presence of inhibiting levels of dATP, depicting a ring-shaped hexamer (α[subscript 6]) where the active sites line the inner hole. Surprisingly, our small-angle X-ray scattering (SAXS) results indicate that human α forms a similar hexamer in the presence of ATP, an activating effector. In both cases, α[subscript 6] is assembled from dimers (α[subscript 2]) without a previously proposed tetramer intermediate (α[subscript 4]). However, we show with SAXS and electron microscopy that at millimolar ATP, the ATP-induced α[subscript 6] can further interconvert with higher-order filaments. Differences in the dATP- and ATP-induced α[subscript 6] were further examined by SAXS in the presence of the β subunit and by activity assays as a function of ATP or dATP. Together, these results suggest that dATP-induced α[subscript 6] is more stable than the ATP-induced α6 and that stabilization of this ring-shaped configuration provides a mechanism to prevent access of the β subunit to the active site of α.National Institutes of Health (U.S.) (GM100008)National Institutes of Health (U.S.) (Grant GM29595)Massachusetts Institute of Technology. Undergraduate Research Opportunities Progra

    Variance Decomposition of the Continuous Assessment of Interpersonal Dynamics (CAID) system: Assessing sources of influence and reliability of observations of parent-teen interactions

    Get PDF
    The Continuous Assessment of Interpersonal Dynamics (CAID) is an observational tool that measures warmth and dominance dynamics in real time and is sensitive to individual, dyadic, and contextual influences. Parent-adolescent interpersonal dynamics, which conceptually map onto parenting styles, are an integral part of positive adolescent adjustment and protect against risky outcomes. The current study’s goal was to test the degree to which sources of influence on CAID data observed in a previous study of married couples generalize to a sample of parent-adolescent dyads. We examined data from ten raters who rated moment-to-moment warmth and dominance using CAID in a sample of 61 parent-adolescent dyads (N = 122) who were largely non-Hispanic White (62%) or African American (30%) based on parent report (adolescent M age = 14; 57% female). Dyads interacted in four different discussion segments (situations). We applied Generalizability Theory to delineate several sources of variance in CAID parameters and estimated within and between-person reliability. Results revealed a number of different influences, including the person, kinsperson (adolescent versus parent), dyad, rater, situation, and interactions among these factors, on ratings of parent-adolescent interpersonal behavior. These results largely replicate results from married couples, suggesting that the factors that influence ratings of interpersonal interactions largely generalize across sample types
    corecore