61 research outputs found

    Modeling Growth Characteristics of Meat-Type Guinea Fowl

    Get PDF
    This study was conducted to describe the growth pattern of the French guinea fowl, a meat-type variety. Using BW data from hatch to 9 wk, 2 nonlinear mathematical functions (Gompertz and logistic) were used to estimate growth patterns of the French guinea fowl. The French guinea fowl did not exhibit sexual dimorphism for growth characteristics. From the Gompertz model, the asymptotic BW, growth rate, and age at maximum growth were 2.05 kg, 0.25 kg/wk, and 5.74 wk in males, respectively, and 2.03 kg, 0.25 kg/wk, and 5.72 wk in females, respectively. The ages at maximum growth were 5.75 and 5.74 wk for males and females, respectively, using the logistic model. Differences in asymptotic BW between males and females were not significant in both Gompertz and logistic models. However, the average asymptotic BW of about 1.50 kg for both sexes predicted by the logistic model was below the average predicted BW from the Gompertz model (2.04 kg) at 9 wk. Also, the logistic model overestimated hatching weight (0.06 kg) more than the Gompertz model (0.03 kg), suggesting that the growth pattern of the French guinea fowl is Gompertz. The inverse relationship between the asymptotic weight and age at maximum growth of the French guinea fowl is similar to that of the pearl gray guinea fowl, chickens, quail, and ducks. Understanding the growth characteristics of French guinea fowl will contribute to the efforts of improving production efficiency of this least studied avian species

    Gompertz-Laird model prediction of optimum utilization of crude protein and metabolizable energy by French guinea fowl broilers

    Get PDF
    This study was conducted to assess the influence of dietary CP and ME on growth parameters of the French guinea fowl, a meat-type variety. In a 2 × 3 × 3 factorial arrangement, 297 one-day-old French guinea keets (162 females and 135 males) were randomly assigned to experimental diets comprising 3,050, 3,100, and 3,150 kcal of ME/kg, each containing 21, 23, and 25% CP from hatch to 4 wk of age (WOA), and 3,100, 3150, and 3,200 kcal of ME/kg, each containing 19, 21, and 23% CP at 5 to 8 WOA. Using BW and G:F data from hatch to 8 WOA, the Gompertz-Laird growth model was employed to estimate growth patterns of the French guinea fowl. Mean differences in exponential growth rate, age of maximum growth, and asymptotic BW among dietary CP and ME levels were not significant. However, instantaneous growth rate and weight at inflection point were significantly higher (P \u3c 0.05) in birds on the 25% CP diet than those on the 21% CP diet at hatch to 4 WOA (1.12 kg/wk and 0.79 kg vs. 1.04 kg/wk and 0.74 kg, respectively). The exponential growth rate was also higher (P \u3c 0.05) in birds fed the 3,050 kcal of ME/kg diet with either 23 or 25% CP than those fed diets containing 3,050 kcal of ME/kg and 21% CP. Mean G:F was higher (P \u3c 0.05) in birds fed diets containing 3,050 kcal of ME/kg and either 21 or 23% CP than those in other dietary treatments. Therefore, based on the Gompertz-Laird growth model estimates, feeding 21 and 23% CP and 3,100 kcal of ME/kg at hatch to 4 WOA and 19 and 21% CP with 3,150 kcal of ME/kg at 5 to 8 WOA can be recommended as adequate for growth for the French guinea fowl broilers

    Transcriptional profiling and pathway analysis reveal differences in pituitary gland function, morphology, and vascularization in chickens genetically selected for high or low body weight

    Get PDF
    Though intensive genetic selection has led to extraordinary advances in growth rate and feed efficiency in production of meat-type chickens, endocrine processes controlling these traits are still poorly understood. The anterior pituitary gland is a central component of the neuroendocrine system and plays a key role in regulating important physiological processes that directly impact broiler production efficiency, though how differences in pituitary gland function contribute to various growth and body composition phenotypes is not fully understood.https://doi.org/10.1186/s12864-019-5670-

    Mapping main, epistatic and sex-specific QTL for body composition in a chicken population divergently selected for low or high growth rate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Delineating the genetic basis of body composition is important to agriculture and medicine. In addition, the incorporation of gene-gene interactions in the statistical model provides further insight into the genetic factors that underlie body composition traits. We used Bayesian model selection to comprehensively map main, epistatic and sex-specific QTL in an F<sub>2 </sub>reciprocal intercross between two chicken lines divergently selected for high or low growth rate.</p> <p>Results</p> <p>We identified 17 QTL with main effects across 13 chromosomes and several sex-specific and sex-antagonistic QTL for breast meat yield, thigh + drumstick yield and abdominal fatness. Different sets of QTL were found for both breast muscles [<it>Pectoralis (P) major </it>and <it>P. minor</it>], which suggests that they could be controlled by different regulatory mechanisms. Significant interactions of QTL by sex allowed detection of sex-specific and sex-antagonistic QTL for body composition and abdominal fat. We found several female-specific <it>P. major </it>QTL and sex-antagonistic <it>P. minor </it>and abdominal fatness QTL. Also, several QTL on different chromosomes interact with each other to affect body composition and abdominal fatness.</p> <p>Conclusions</p> <p>The detection of main effects, epistasis and sex-dimorphic QTL suggest complex genetic regulation of somatic growth. An understanding of such regulatory mechanisms is key to mapping specific genes that underlie QTL controlling somatic growth in an avian model.</p

    Genetic properties of feed efficiency parameters in meat-type chickens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Feed cost constitutes about 70% of the cost of raising broilers, but the efficiency of feed utilization has not kept up the growth potential of today's broilers. Improvement in feed efficiency would reduce the amount of feed required for growth, the production cost and the amount of nitrogenous waste. We studied residual feed intake (RFI) and feed conversion ratio (FCR) over two age periods to delineate their genetic inter-relationships.</p> <p>Methods</p> <p>We used an animal model combined with Gibb sampling to estimate genetic parameters in a pedigreed random mating broiler control population.</p> <p>Results</p> <p>Heritability of RFI and FCR was 0.42-0.45. Thus selection on RFI was expected to improve feed efficiency and subsequently reduce feed intake (FI). Whereas the genetic correlation between RFI and body weight gain (BWG) at days 28-35 was moderately positive, it was negligible at days 35-42. Therefore, the timing of selection for RFI will influence the expected response. Selection for improved RFI at days 28-35 will reduce FI, but also increase growth rate. However, selection for improved RFI at days 35-42 will reduce FI without any significant change in growth rate. The nature of the pleiotropic relationship between RFI and FCR may be dependent on age, and consequently the molecular factors that govern RFI and FCR may also depend on stage of development, or on the nature of resource allocation of FI above maintenance directed towards protein accretion and fat deposition. The insignificant genetic correlation between RFI and BWG at days 35-42 demonstrates the independence of RFI on the level of production, thereby making it possible to study the molecular, physiological and nutrient digestibility mechanisms underlying RFI without the confounding effects of growth. The heritability estimate of FCR was 0.49 and 0.41 for days 28-35 and days 35-42, respectively.</p> <p>Conclusion</p> <p>Selection for FCR will improve efficiency of feed utilization but because of the genetic dependence of FCR and its components, selection based on FCR will reduce FI and increase growth rate. However, the correlated responses in both FI and BWG cannot be predicted accurately because of the inherent problem of FCR being a ratio trait.</p

    Identification of QTL controlling meat quality traits in an F2 cross between two chicken lines selected for either low or high growth rate

    Get PDF
    Meat technological traits (i.e. meat pH, water retention and color) are important considerations for improving further processing of chicken meat. These quality traits were originally characterized in experimental lines selected for high (HG) and low (LG) growth. Presently, quantitative trait loci (QTL) for these traits were analyzed in an F2 population issued from the HG × LG cross. A total of 698 animals in 50 full-sib families were genotyped for 108 microsatellite markers covering 21 linkage groups. The HG and LG birds exhibit large differences in body weight and abdominal fat content. Several meat quality traits [pH at 15 min post-slaughter (pH15) and ultimate pH (pHu), breast color-redness (BCo-R) and breast color-yellowness (BCo-Y)] were lower in HG chickens. In contrast, meat color-lightness (BCo-L) was higher in HG chickens, whereas meat drip loss (DL) was similar in both lines. HG birds were more active on the shackle line. Association analyses were performed using maximum-likelihood interval mapping in QTLMAP. Five genome-wide significant QTLs were revealed: two for pH15 on GGA1 and GGA2, one for DL on GGA1, one for BCo-R and one for BCo-Y both on GGA11. In addition, four suggestive QTLs were identified by QTLMAP for BCo-Y, pHu, pH15 and DL on GGA1, GGA4, GGA12 and GGA14, respectively. The QTL effects, averaged on heterozygous families, ranged from 12 to 31% of the phenotypic variance. Further analyses with QTLExpress confirmed the two genome-wide QTLs for meat color on GGA11, failed to identify the genome-wide QTL for pH15 on GGA2, and revealed only suggestive QTLs for pH15 and DL on GGA1. However, QTLExpress qualified the QTL for pHu on GGA4 as genome-wide. The present study identified genome-wide significant QTLs for all meat technological traits presently assessed in these chickens, except for meat lightness. This study highlights the effects of divergent selection for growth rate on some behavioral traits, muscle biochemistry and ultimately meat quality traits. Several QTL regions were identified that are worthy of further characterization. Some QTLs may in fact co-localize, suggesting pleiotropic effects for some chromosomal regions.https://doi.org/10.1186/1471-2164-8-15

    Evidence of a causal relationship between body mass index and psoriasis:A mendelian randomization study

    Get PDF
    Background: Psoriasis is a common inflammatory skin disease that has been reported to be associated with obesity. We aimed to investigate a possible causal relationship between body mass index (BMI) and psoriasis. Methods and Findings: Following a review of published epidemiological evidence of the association between obesity and psoriasis, mendelian randomization (MR) was used to test for a causal relationship with BMI. We used a genetic instrument comprising 97 single-nucleotide polymorphisms (SNPs) associated with BMI as a proxy for BMI (expected to be much less confounded than measured BMI). One-sample MR was conducted using individual-level data (396,495 individuals) from the UK Biobank and the Nord-Trøndelag Health Study (HUNT), Norway. Two-sample MR was performed with summary-level data (356,926 individuals) from published BMI and psoriasis genome-wide association studies (GWASs). The one-sample and two-sample MR estimates were meta-analysed using a fixed-effect model. To test for a potential reverse causal effect, MR analysis with genetic instruments comprising variants from recent genome-wide analyses for psoriasis were used to test whether genetic risk for this skin disease has a causal effect on BMI. Published observational data showed an association of higher BMI with psoriasis. A mean difference in BMI of 1.26 kg/m2 (95% CI 1.02-1.51) between psoriasis cases and controls was observed in adults, while a 1.55 kg/m2 mean difference (95% CI 1.13-1.98) was observed in children. The observational association was confirmed in UK Biobank and HUNT data sets. Overall, a 1 kg/m2 increase in BMI was associated with 4% higher odds of psoriasis (meta-analysis odds ratio [OR] = 1.04; 95% CI 1.03-1.04; P = 1.73 × 10-60). MR analyses provided evidence that higher BMI causally increases the odds of psoriasis (by 9% per 1 unit increase in BMI; OR = 1.09 (1.06-1.12) per 1 kg/m2; P = 4.67 × 10-9). In contrast, MR estimates gave little support to a possible causal effect of psoriasis genetic risk on BMI (0.004 kg/m2 change in BMI per doubling odds of psoriasis (-0.003 to 0.011). Limitations of our study include possible misreporting of psoriasis by patients, as well as potential misdiagnosis by clinicians. In addition, there is also limited ethnic variation in the cohorts studied. Conclusions: Our study, using genetic variants as instrumental variables for BMI, provides evidence that higher BMI leads to a higher risk of psoriasis. This supports the prioritization of therapies and lifestyle interventions aimed at controlling weight for the prevention or treatment of this common skin disease. Mechanistic studies are required to improve understanding of this relationship

    Afri-Can Forum 2

    Full text link

    Studies on genetic drift and inbreeding in small populations under artificial selection

    No full text
    The effects of population size, mating strategy, and selection on selection response, genetic drift, and variability of response were studied in small Japanese quail populations. The effects of population size on genetic gain, variability of response and inbreeding were examined for a 3 generation phenotypic selection experiment. Effective population sizes of 12 (Large) and 6 (Small) per replicate were evaluated at the same selection intensity. The selection criterion was Week 2 body weight in Japanese quail. Estimates of genetic gain at Generation 3 were 10.67 and 8.89 grams, respectively for the large and small populations. A selection experiment involving 3 mating strategies was conducted in order to evaluate the efficiency of selection and effectiveness of reducing genetic drift and/or inbreeding in small populations. The mating strategies used were random (RM), minimum coancestry (MN), and maximum coancestry (MX) mating. Genetic gain at Generation 3 was 7.03, 7.36 and 6.62 grams and inbreeding levels were 6%, 4% and 12% in the RM, MN and MX lines, respectively. After 3 generations of selection, inbreeding effective population size had declined by 62% in the MX lines. In the MN lines, inbreeding effective population size increased by 16%. The effects of inbreeding on reproductive performance were studied in the large and small populations (Experiment I) and the RM, MN and MX lines (Experiment II). Ten percent increase in the embryo’s inbreeding caused about 10% reduction in fertility in both experiments. Ten percent increase in the embryo’s inbreeding caused 10% reduction in hatchability in Experiment I and RM lines in Experiment II, and about 13% reduction in hatchability in MX lines. The goal of short-term selection has been to maximize genetic gain. Results from the present study suggest that the goal of a breeding program for small populations should shift from maximization of response to optimization of genetic gain and effective population size. Among the factors to be optimized are rate of selection, variability of response, inbreeding depression in the selection trait and fitness. Restriction of family size coupled with the use of either circular pair or maximum avoidance mating is preferred over within-family selection under random mating or mass selection with maximum avoidance in terms of reducing inbreeding in small populations undergoing artificial selection.Land and Food Systems, Faculty ofGraduat
    corecore