22 research outputs found

    A multimodal speech interface for dynamic creation and retrieval of geographical landmarks on a mobile device

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 140).As mobile devices become more powerful, researchers look to develop innovative applications that use new and effective means of input. Furthermore, developers must exploit the device's many capabilities (GPS, camera, touch screen, etc) in order to make equally powerful applications. This thesis presents the development of a multimodal system that allows users to create and share informative geographical landmarks using Android-powered smart-phones. The content associated with each landmark is dynamically integrated into the system's vocabulary, which allows users to easily use speech to access landmarks by the information related to them. The initial results of releasing the application on the Android Market have been encouraging, but also suggest that improvements need to be made to the system.by Samuel S. Dyar.M.Eng

    Quality of life in restorative versus non-restorative resections for rectal cancer:systematic review

    Get PDF
    BACKGROUND: Low rectal cancers could be treated using restorative (anterior resection, AR) or non-restorative procedures with an end/permanent stoma (Hartmann’s, HE; or abdominoperineal excision, APE). Although the surgical choice is determined by tumour and patient factors, quality of life (QoL) will also influence the patient's future beyond cancer. This systematic review of the literature compared postoperative QoL between the restorative and non-restorative techniques using validated measurement tools. METHODS: The review was registered on PROSPERO (CRD42020131492). Embase and MEDLINE, along with grey literature and trials websites, were searched comprehensively for papers published since 2012. Inclusion criteria were original research in an adult population with rectal cancer that reported QoL using a validated tool, including the European Organization for Research and Treatment of Cancer QLQ-CR30, QLQ-CR29, and QLQ-CR38. Studies were included if they compared AR with APE (or HE), independent of study design. Risk of bias was assessed using the Risk Of Bias In Non-Randomized Studies of Interventions (ROBINS-I) tool. Outcomes of interest were: QoL, pain, gastrointestinal (GI) symptoms (stool frequency, flatulence, diarrhoea and constipation), and body image. RESULTS: Nineteen studies met the inclusion criteria with a total of 6453 patients; all papers were observational and just four included preoperative evaluations. There was no identifiable difference in global QoL and pain between the two surgical techniques. Reported results regarding GI symptoms and body image documented similar findings. The ROBINS-I tool highlighted a significant risk of bias across the studies. CONCLUSION: Currently, it is not possible to draw a firm conclusion on postoperative QoL, pain, GI symptoms, and body image following restorative or non-restorative surgery. The included studies were generally of poor quality, lacked preoperative evaluations, and showed considerable bias in the data

    Indoor robot gardening: design and implementation

    Get PDF
    This paper describes the architecture and implementation of a distributed autonomous gardening system with applications in urban/indoor precision agriculture. The garden is a mesh network of robots and plants. The gardening robots are mobile manipulators with an eye-in-hand camera. They are capable of locating plants in the garden, watering them, and locating and grasping fruit. The plants are potted cherry tomatoes enhanced with sensors and computation to monitor their well-being (e.g. soil humidity, state of fruits) and with networking to communicate servicing requests to the robots. By embedding sensing, computation, and communication into the pots, task allocation in the system is de-centrally coordinated, which makes the system scalable and robust against the failure of a centralized agent. We describe the architecture of this system and present experimental results for navigation, object recognition, and manipulation as well as challenges that lie ahead toward autonomous precision agriculture with multi-robot teams.Swiss National Science Foundation (contract number PBEL2118737)United States. Army Research Office. Multidisciplinary University Research Initiative (MURI SWARMS project W911NF-05-1-0219)National Science Foundation (U.S.) (NSF IIS-0426838)Intel Corporation (EFRI 0735953 Intel)Massachusetts Institute of Technology (UROP program)Massachusetts Institute of Technology (MSRP program

    ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars

    Full text link

    Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models

    No full text
    Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the laser-induced breakdown spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element's emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “sub-model” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares (PLS) regression, is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements
    corecore