6,766 research outputs found

    First-principles Study of the Luminescence of Eu2+-doped Phosphors

    Full text link
    The luminescence of fifteen representative Eu2+^{2+}-doped phosphors used for white-LED and scintillation applications is studied through a Constrained Density Functional Theory. Transition energies and Stokes shift are deduced from differences of total energies between the ground and excited states of the systems, in the absorption and emission geometries. The general applicability of such methodology is first assessed: for this representative set, the calculated absolute error with respect to experiment on absorption and emission energies is within 0.3 eV. This set of compounds covers a wide range of transition energies that extents from 1.7 to 3.5 eV. The information gained from the relaxed geometries and total energies is further used to evaluate the thermal barrier for the 4f5d4f-5d crossover, the full width at half-maximum of the emission spectrum and the temperature shift of the emission peak, using a one-dimensional configuration-coordinate model. The former results indicate that the 4f5d4f-5d crossover cannot be the dominant mechanism for the thermal quenching behavior of Eu2+^{2+}-doped phosphors and the latter results are compared to available experimental data and yield a 30%\% mean absolute relative error. Finally, a semi-empirical model used previously for Ce3+^{3+}-doped hosts is adapted to Eu2+^{2+}-doped hosts and gives the absorption and emission energies within 0.9 eV of experiment, underperforming compared to the first-principles calculation.Comment: 17 pages, 13 figures, (Phys. Rev. B 2017 Accept

    First-principles study of Ce3+^{3+} doped lanthanum silicate nitride phosphors: Neutral excitation, Stokes shift, and luminescent center identification

    Full text link
    We study from first principles two lanthanum silicate nitride compounds, LaSi3_{3}N5_{5} and La3_{3}Si6_{6}N11_{11}, pristine as well as doped with Ce3+^{3+} ion, in view of explaining their different emission color, and characterising the luminescent center. The electronic structures of the two undoped hosts are similar, and do not give a hint to quantitatively describe such difference. The 4f5d4f\rightarrow 5d neutral excitation of the Ce3+^{3+} ions is simulated through a constrained density-functional theory method coupled with a Δ{\Delta}SCF analysis of total energies, yielding absorption energies. Afterwards, atomic positions in the excited state are relaxed, yielding the emission energies and Stokes shifts. Based on these results, the luminescent centers in LaSi3_{3}N5_{5}:Ce and La3_{3}Si6_{6}N11_{11}:Ce are identified. The agreement with the experimental data for the computed quantities is quite reasonable and explains the different color of the emitted light. Also, the Stokes shifts are obtained within 20\% difference relative to experimental data.Comment: 12 pages, 10 figure

    Assessment of First-Principles and Semiempirical Methodologies for Absorption and Emission Energies of Ce3+^{3+}-Doped Luminescent Materials

    Full text link
    In search of a reliable methodology for the prediction of light absorption and emission of Ce3+^{3+}-doped luminescent materials, 13 representative materials are studied with first-principles and semiempirical approaches. In the first-principles approach, that combines constrained density-functional theory and Δ\DeltaSCF, the atomic positions are obtained for both ground and excited states of the Ce3+^{3+} ion. The structural information is fed into Dorenbos' semiempirical model. Absorption and emission energies are calculated with both methods and compared with experiment. The first-principles approach matches experiment within 0.3 eV, with two exceptions at 0.5 eV. In contrast, the semiempirical approach does not perform as well (usually more than 0.5 eV error). The general applicability of the present first-principles scheme, with an encouraging predictive power, opens a novel avenue for crystal site engineering and high-throughput search for new phosphors and scintillators.Comment: 12 pages, 3 figure

    The war for the future

    Get PDF

    Simultaneous quantification of depolymerization and mineralization rates by a novel 15N tracing model

    Get PDF
    The depolymerization of soil organic matter, such as proteins and (oligo-)peptides, into monomers (e.g. amino acids) is currently considered to be the rate-limiting step for nitrogen (N) availability in terrestrial ecosystems. The mineralization of free amino acids (FAAs), liberated by the depolymerization of peptides, is an important fraction of the total mineralization of organic N. Hence, the accurate assessment of peptide depolymerization and FAA mineralization rates is important in order to gain a better process-based understanding of the soil N cycle. In this paper, we present an extended numerical 15N tracing model Ntrace, which incorporates the FAA pool and related N processes in order to provide a more robust and simultaneous quantification of depolymerization and gross mineralization rates of FAAs and soil organic N. We discuss analytical and numerical approaches for two forest soils, suggest improvements of the experimental work for future studies, and conclude that (i) when about half of all depolymerized peptide N is directly mineralized, FAA mineralization can be as important a rate-limiting step for total gross N mineralization as peptide depolymerization rate; (ii) gross FAA mineralization and FAA immobilization rates can be used to develop FAA use efficiency (NUEFAA), which can reveal microbial N or carbon (C) limitation

    When group dispersal and Allee effect shape metapopulation dynamics

    Get PDF
    The dispersal ability of a species will be critical for how population dynamics are realized in spatially structured systems. To date, the effect of group dispersal on metapopulation dynamics is poorly understood. Here, we investigate how group dispersal and Allee effects shape metapopulation dynamics identifying conditions in which group dispersal can be an advantage over independent dispersal. We approach this question by building and analysing a Markovian random walk for metapopulation dynamics including group dispersal and Allee effect. This Markovian random walk is analogous to the discrete-time Stochastic Patch Occupancy Model (SPOM). We find that intermediate group sizes may lead to larger and more sustainable metapopulations in the presence of an Allee effect. Hence, understanding how group size variation and realized (meta) population dynamics are linked offers an exciting future venue for research that is expected to yield key insights into the ecology and evolution of populations occupying spatially structured environments.Peer reviewe

    Preventing Ventilator Associated Pneumonia

    Get PDF
    Ventilator Associated Pneumonia is a serious infection in the lungs that affects individuals who are being mechanically ventilated. These patients, who are already critically ill, have decreased defense mechanisms that allow pathogens such as bacteria to invade the sterile respiratory tract (Cooper, 2021). Many of the risk factors for the development of VAP may be preventable, and it is up to the ICU nurses, who care for these mechanically ventilated patients, to play a role in the implementation of certain guidelines and/or bundles that may help with the prevention of ventilator associated pneumonia ( Aysegul et al., 2020). Although ventilator associated pneumonia may never be 100% prevented, the existing prevention guidelines are the best available resources to improve outcomes for ventilated patients. In our presentation, we elaborated on the most common prevention guidelines used in practice today
    corecore