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The dispersal ability of a species will be critical for how population dynamics are real-
ized in spatially structured systems. To date, the effect of group dispersal on metapop-
ulation dynamics is poorly understood. Here, we investigate how group dispersal and 
Allee effects shape metapopulation dynamics identifying conditions in which group 
dispersal can be an advantage over independent dispersal. We approach this question 
by building and analysing a Markovian random walk for metapopulation dynamics 
including group dispersal and Allee effect. This Markovian random walk is analogous 
to the discrete-time Stochastic Patch Occupancy Model (SPOM). We find that interme-
diate group sizes may lead to larger and more sustainable metapopulations in the pres-
ence of an Allee effect. Hence, understanding how group size variation and realized 
(meta)population dynamics are linked offers an exciting future venue for research that 
is expected to yield key insights into the ecology and evolution of populations occupy-
ing spatially structured environments.

Introduction

Metapopulations are an assembly of spatially 
delimited local populations that are coupled 
by some degree of migration (Hanski & Gag-
giotti 2004). Classic metapopulation dynamics 
(Levins 1969, 1970) focus on the processes 
of local extinction and re-colonization of local 
habitat patches in the same manner as popula-
tion dynamics are concerned with births and 
deaths of individuals. Since their development, 
metapopulation models have evolved from being 
spatially implicit to being spatially explicit with 
broad real-world applicability, for example in 
conservation biology (Hanski 1999). Indeed, the 

metapopulation theory is no longer an academic 
debate as a broad range of species have been 
shown to persist regionally via metapopulation 
dynamics, e.g. butterflies (Hanski 1999), plants 
(Ouborg 1993), frogs (Carlson & Edenhamn 
2000) and owls (Lahaye et al. 1994). Impor-
tantly, metapopulation theory has also captured 
well the epidemiological dynamics of many dis-
eases, as reviewed in Grenfell and Harwood 
(1997) and Parratt et al. (2016).

Patchy distribution of suitable habitat —
either naturally or as a result of human induced 
habitat fragmentation— has been considered a 
defining element of metapopulations. However, 
the dispersal ability of a species will be critical 
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for how population dynamics are realized in spa-
tially structured systems (Hanski 1999). The dis-
persal process may be divided into three phases: 
departure, movement and settlement (Matthysen 
2012). Following departure, the movement pro-
cess is often described by the “basic” dispersal 
kernel, which is based on the distribution of dis-
persed units. Notably, this basic dispersal kernel 
frequently deviates from the realized distribution 
of individuals in the field due to spatial varia-
tion in settlement success [i.e., the “effective” 
dispersal kernel, which is based on the distribu-
tion of successfully dispersed units; Nathan et al. 
(2012)]. To date, the question of why to disperse 
has been extensively investigated from an evo-
lutionary perspective, and these investigations 
have generally established a significant advan-
tage associated with dispersal ability (Travis & 
Dytham 2002, Ronce 2007, Rousset 2012, Star-
rfelt & Kokko 2012). Beyond this first question, 
the amazing diversity of dispersal mechanisms 
that animals, plants, fungi, peat mosses and other 
organisms have developed leads to the second 
question of how to disperse. In addition to the 
many modes (e.g. active vs. passive) of individu-
als’ movement through space, both individual 
and group dispersal have been documented in 
a wide range of species. Indeed, it may be that 
in many systems, whether it is individuals or 
groups of individuals dispersing may play a sig-
nificant role in the settlement phase of dispersal, 
thereby creating discrepancy between the basic 
and realized dispersal kernels. The costs of soli-
tary emigration implied by Allee effects — for 
example when mates become rare and opportu-
nities for reproduction are limited (Courchamp 
et al. 1999) — may be overcome by colonization 
of habitats by groups of individuals, thereby 
increasing the likelihood of successful establish-
ment following arrival at a previously uncolo-
nized yet suitable patch in a metapopulation.

Group dispersal is common in social insects 
(colony fission or budding in ants and bees), 
vertebrates (e.g. lions) and collective swarming 
in bacteria (Clobert et al. 2012). Pathogen spores 
are known to form clumps (Ferrandino & Aylor 
1987), suggesting that the size of the dispers-
ing unit may have profound consequences for 
realized epidemiological dynamics (Tack et al. 
2014). Group dispersal may be an active process 

or a more passive process promoted by external 
factors, such as extreme weather events which 
are recognized to be a powerful mechanism 
for moving aggregates of individuals from one 
site to another (Aylor 1990). However, only a 
few modelling approaches characterizing this 
type of dispersal and its selective advantages 
exist in the literature. Meerson and Ovaskainen 
(2013) proposed a modelling framework for rep-
resenting immigration–extinction dynamics in 
which group dispersal can be included. Using 
this framework, Ovaskainen (2017) showed 
that the colonization rate is maximized with 
intermediate group sizes in the presence of an 
Allee effect. In parallel, Soubeyrand et al. (2015) 
showed, using an evolutionary model embedded 
in a demographic model and simulation experi-
ments, how the spatial limits and fragmentation 
of the species habitat shape the frequencies of 
the independent and group dispersal strategies. 
In this article, we describe how group disper-
sal and Allee effects may shape metapopulation 
dynamics by identifying conditions in which 
group dispersal can present an advantage over 
independent dispersal. We focus on two key 
metapopulation parameters: metapopulation size 
and time to extinction. Specifically, we ask: (1) 
How to include group dispersal in a metapopula-
tion model whose behaviour can be analytically 
investigated, to be able to draw general conclu-
sions? (2) Do group dispersal and Allee effect 
have a monotonic influence on metapopulation 
dynamics or is there a trade-off between the two? 
(3) How do group dispersal and Allee effect 
influence the stability of a metapopulation?

Two-population system

Here, we consider a basic system with a single 
source population affected by a dispersal event, 
which potentially generates a new population. 
This simple system is defined and analysed 
below and is used as a basis for the metapopula-
tion model.

Source population

Consider a source population uniformly spread 



ANN. ZOOL. FENNICI  Vol. 54  •  How group dispersal shapes metapopulations	 125

within a disk whose center is xs in the planar 
space ℝ2 at the altitude 0 m (i.e. the ground 
level). Let λ0 denote the initial intensity of 
this population (the intensity is measured, for 
instance, by a number of individuals per square 
meter). Without loss of generality, this intensity 
is set to 1 (λ0 = 1).

Suppose that the source population is simul-
taneously affected by the two following pro-
cesses (because of an extreme weather event for 
example): (1) migration of a fraction λm of the 
population, and (2) destruction of a fraction λd of 
the population, with λm + λd ≤ λ0 = 1.

Right after the migration/destruction event, 
the intensity of the source population is still con-
stant but equal to λ0 – λm – λd = 1 – λm– λd.

Group dispersal

The migrating fraction λm of the source popula-
tion is dispersed as a single group. Indeed, the 
migrating fraction is assumed to be released 
within a short duration and, consequently, to 
face approximately constant release and trans-
port conditions. However, as in Soubeyrand et 
al. (2011, 2014), the group is assumed to be 
diffused during the transport: the air volume con-
taining the migrating fraction of the source pop-
ulation is in expansion. This feature is depicted 
in Fig. 1 and is modelled below.

When the migrating fraction reaches the 
atmosphere layer, at altitude h, where it will be 
transported horizontally, it is spread horizon-
tally like a Gaussian kernel centred around the 
source population centre xs and with variance 

. Therefore, at this stage, the intensity λup of 
the migrating fraction orthogonally projected to 
the planar space satisfies for all x  ℝ2:

 , (1)

where ||x – xs|| is the Euclidean distance between 
x and xs in ℝ2.

Then, the migrating fraction is transported 
horizontally to a colonization location xc. During 
this horizontal move, the migrating fraction con-
tinues to be diffused and the strength of the dif-
fusion depends on the distance travelled, namely 
||xc – xs||. Finally, the migrating fraction is depos-

ited to the ground without additional diffusion. 
Therefore, after the deposition, the intensity λc 
of the migrating fraction over the planar space 
is proportional to a Gaussian kernel centred 
around the colonization location xc and with vari-
ance  + ν||xc – xs||

η. Thus, for all x  ℝ2,

 , (2)

where ν and η are positive parameters modulating 
the diffusion during the horizontal move of the 
migrating fraction. According to Eq. 2, the mini-
mal diffusion is determined by  and the diffu-
sion increases with the travelled distance ||xc – xs||, 
up to the scaling factor ν and the shape parameter 
η. The greater ν, the greater the effect of the trav-
elled distance on the diffusion. In addition, when 
η is smaller (or greater) than 1, consecutive incre-
ments in the travelled distance have decreasing 
(or increasing) effects on the diffusion.

It has to be noted that the choice of the 
Gaussian kernels used above is rather arbitrary, 
even if it could be justified theoretically by con-
sidering that the migrating fraction consists of a 
large number of particles following independ-
ent Brownian motions stopped at a fixed time 
depending on the travelled distance (Soubeyrand 
et al. 2011). However, if we suppose that an 
extreme weather event generates migration, as 
suggested above, then the Gaussian assumption 
might be strongly unrealistic. In addition, the dif-
fusion and the travelled distance ||xc – xs|| could 

Source
population
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population
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movement

Deposition

Horizontal movement

Fig. 1. Transport and diffusion of the migrating fraction 
of the source population.
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depend on the duration of the extreme weather 
event. Another desirable feature for λc could 
be that its support is finite (to account for finite 
distance movements only). Moreover, the dis-
persal parameters in Eqs. 1 and 2 could depend 
on group size, for behavioural reasons in the 
case of active dispersers or bio-physical reasons 
in the case of passive particles (e.g. when par-
ticles are sticky or clumped; Soubeyrand et al. 
(2015) considered such a dependence between 
dispersal parameters and group size). In the 
framework that we propose, more complicated 
spatio-temporal scenarios could be easily taken 
into account: the form of λc could be replaced 
by more elaborated or finite-support functions, 
and the subsequent equations (which essentially 
require the knowledge of the maximum intensity 
of the colonizing population) could be modified 
accordingly.

Survival and emergence

After the migration/destruction event, the ques-
tion of the survival of the source population and 
the question of the emergence of the colonizing 
population arise. An Allee effect is assumed to 
operate as follows:

•	 If the new intensity 1 – λm – λd of the source 
population is above the threshold λmin, then 
the source population survives and returns 
to its initial state, that is to say the unit level; 
otherwise, it becomes extinct.

•	 If the maximum intensity of the coloniz-
ing population, namely λc(xc), is above the 
threshold λmin, then the colonizing population 
emerges and reaches the unit level over a disk 
with centre xc (like the source population at its 
initial state); otherwise, it becomes extinct.

Thus, there are four possible outputs after the 
migration/destruction event:

1.	 The source population (SP) survives and the 
colonizing population (CP) emerges if:

 , (3)

	 where r = ||xc – xs|| is the distance between the 
centers of the source and colonizing popula-
tions;

2.	 SP survives and CP goes extinct if:

 , (4)

3.	 SP goes extinct and CP emerges if:

 
,
 (5)

4.	 SP and CP go extinct if:

 . (6)

Figure 2 presents examples of phase dia-
grams describing the outputs of the two-popu-
lation system. If λm, λd and λmin are all different 
from 0 and 1, each of the four outputs can be 
reached by the system, depending on the values 
of , ν, r and η) (see Fig. 2a and b). When the 
diffusion of the migrating fraction is large (i.e., 
large  or large νrη), at least one of the two 
populations goes extinct: either the migrating 
fraction is small, SP survives and CP vanishes 
because of the diffusion, or the migrating frac-
tion is large, SP vanishes and CP emerges despite 
the diffusion (see Fig. 2d and g). When the dif-
fusion of the migrating fraction is even larger, 
the colonizing population cannot emerge (see 
Fig. 2e and h). Curves in Fig. 2f and g were 
drawn for a value of the power η > 1; such a 
value tends to increase the diffusion of the colo-
nizing population at large distances (r > 1) and to 
reduce the possibility that the colonizing popula-
tion emerges. If η < 1, the curves are no more 
concave but convex (see Fig. 3).

To summarize, in our modelling framework 
dispersal in groups is a two-edged sword: it can 
permit a migrating population to be able to sur-
mount the Allee threshold, but it also might pose 
a risk in the source population, by dropping its 
intensity below that threshold.
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Metapopulation dynamics

The objectives here are (i) to generalize the two-
population system into a metapopulation system, 
i.e., a dynamic system with the number of popu-
lations that varies in the set ℕ of non-negative 
integers, and (ii) to study the properties of this 
dynamic system. Here, space is not explicitly 
represented to be able to obtain closed math-
ematical forms for the transition probabilities.

Specification of model components

In the metapopulation model defined below, the 
migrating and destroyed fractions as well as the 
dispersal distances are random variables. This 
specification leads to a metapopulation whose 
size follows a Markovian random walk.

Migration/destruction events

Such events occur at times t1, t2, …, and each of 
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these events affects only one population, i.e., one 
source population (SP). SP at time ti is uniformly 
drawn from among all the present populations 
and the draw is conditionally independent from 
the previous draws at time t1, …, ti – 1, given the 
state of the system between ti – 1 and ti.

Migrating and destroyed fractions

The migrating fraction λm and the destroyed 
fraction λd are two proportions whose sum is 
greater than or equal to 1. The fractions λm and 
λd are independently drawn at times {t1, t2, …} 
in uniform distributions in [0, αm] and [0, αd], 
respectively, where 0 ≤ αm + αd ≤ 1. Thus, the 
probability density function and the expectation 
of (λm, λd) are:

 

and

 ,

where 𝟙(·) is the indicator function (𝟙(E) = 1 if 
event E occurs, otherwise 𝟙(E) = 0). A new pair 
of proportions (λm, λd) is drawn for each migra-
tion/destruction event and this draw is independ-
ent from the previous ones.

Here, we use a rather simple model for 
drawing (λm, λd). This model allows us to obtain 
closed mathematical formulas for analysing the 

metapopulation dynamics; see below. Alterna-
tive and finer modelling could be based, for 
example, on the Dirichlet distribution.

Dispersal distances

Migrating fractions are assumed to be dispersed 
at random distances ||xc – xs|| independently 
drawn at times {t1, t2, …} under an exponential–
power distribution (defined over ℝ+) with param-
eters β > 0 and γ > 0. Thus, the probability den-
sity function and the expectation of ||xc – xs|| are:

 

and

 .

For γ < 1, the dispersal function is fat-tailed.
Colonizing populations are assumed to not 

overlap with existing populations. This assump-
tion is defensible if the spatial extent of each 
population is small with respect to the mean 
dispersal distance and the number of populations 
is not too large. Hence, we will assume that the 
maximal number of populations is Nmax < . It 
has to be noted that a spatially explicit version 
of the model could circumvent this assumption, 
but such a model would not allow us to obtain 
analytical results. More generally, exploring spa-
tially explicit scenarios would be interesting to 
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numerically assess (i) under which conditions 
our temporal-only model makes adequate pre-
diction and (ii) which spatial features and pro-
cesses lead to deviations between our model and 
a spatially-explicit model. 

Regeneration/emergence of populations

After each migration/destruction event, if the 
source population survives (see survival rules in 
the section ‘Survival and emergence’), it reaches 
the unit level. Similarly, if the colonizing popu-
lation emerges (see emergence rules in the sec-
tion ‘Survival and emergence’), it reaches the 
unit level.

Additional assumptions for the 
metapopulation

Between the migration/destruction events mod-
elled above, we assume that minor migrations 
between existing populations occur but the mod-
ification in the population intensities are tempo-
rary (i.e., the intensity of each population can 
be assumed to remain equal to the unit level). In 
addition, we assume that between the migration/
destruction events no existing population van-
ishes and no new population emerges.

Dynamics of the metapopulation size

Under the assumptions made above, the meta
population size (i.e. the number of populations) 
follows a Markovian random walk over the 
set of non-negative integers ℕ. In this random 
walk, the state “zero” (i.e. the metapopulation 
extinction) is an absorbing state and the possible 
transitions are only increments +1. –1 and +0. 
Let Ni denote the metapopulation size after the 
migration/destruction event occurring at time ti. 
The transition probabilities of the random walk 
are the same for any Ni in {1, …, Nmax – 1} but 
are specific for Ni = 0 and Ni = Nmax:

•	 When 1 ≤ Ni < Nmax,

 ℙ(Ni + 1 = Ni + 1) = p+1,

 ℙ(Ni + 1 = Ni – 1) = p–1,
 ℙ(Ni + 1 = Ni) = 1 – p+1 – p–1 = p+0,

	 where p+1 and p–1 are provided in Eqs. A2 and 
A3 in Appendix.

•	 When Ni = 0,

 ℙ(Ni + 1 = Ni + 1) = 0,
 ℙ(Ni + 1 = Ni – 1) = 0,
 ℙ(Ni + 1 = Ni) = 1.

•	 When Ni = Nmax,

 ℙ(Ni + 1 = Ni + 1) = 0,
 ℙ(Ni + 1 = Ni) = p+0 + p+1,
 ℙ(Ni + 1 = Ni – 1) = p–1.

This Markovian random walk can be viewed, 
in the context of metapopulation dynamics, as a 
discrete-time Stochastic Patch Occupancy Model 
(SPOM; Ovaskainen & Hanski 2004a), where 
the time coincides with the indices i  {1, 2, …}
of the migration/destruction events occurring at 
the real times  {t1, t2, …}.

Quasi-stationary distribution and 
extinction time

In general, after a sufficiently long time, any 
metapopulation governed by the transition prob-
abilities provided above vanishes. There is one 
exception to this statement: in the specific case 
αm + αd + λmin ≤ 1, the metapopulation cannot 
vanish because the intensity of any SP remains 
above the threshold λmin even if the migrating 
and destroyed fractions λm and λd are equal to 
their maximum values αm and αd, respectively.

Because the destiny of a metapopulation is, in 
general and in theory, to go extinct, we need tools 
to describe the behaviour of the metapopulation 
before extinction. Thus, following (Ovaskainen 
& Hanski 2004b: box 4.2), we analysed our 
metapopulation dynamics including group dis-
persal and Allee effect with the following tools:

•	 the quasi-stationary distribution of the meta-
population size, which gives the conditional 
probability distribution for the size of the 
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metapopulation given that the metapopula-
tion has not reached extinction;

•	 the expected time to extinction, which gives, 
for each initial size of the metapopulation, 
the average number of migration/destruction 
events that leads to the extinction of the 
metapopulation. 

The exact definitions of these tools and the 
corresponding formula are provided in Darroch 
& Seneta (1967: section 4) and Ovaskainen and 
Hanski (2004b: box 4.2). These formulas, which 
require the transition probabilities provided in 
the previous subsection as input, were used to 
produce the plots shown in the Results. Note that 
the quasi-stationary distribution that we consid-
ered here does not depend on the initial size of 
the metapopulation. Thus, as explained by Dar-
roch and Seneta (1967), such a quasi-stationary 
distribution is relevant for the realizations in 
which the time to extinction is long.

Results

Regarding the strength of the Allee effect 
— measured by the threshold λmin — on the 
quasi-distribution of the metapopulation size 
(see Fig. 4); as expected, the stronger the Allee 
effect, more concentrated on small sizes the 
quasi-distribution, because the Allee effect plays 

against the survival of SP and the emergence 
of CP. Interestingly, the change in the shape of 
the quasi-distribution is relatively abrupt (see 
Fig. 4): from λmin = 0.13 to λmin = 0.11, the 
quasi-distribution rapidly shifts from preferen-
tially weighting the small sizes to preferentially 
weighting the large sizes.

Regarding the effect of the strength of the 
group diffusion — measured by the variance 

 and the parameter ν — on the quasi-distri-
bution of the metapopulation size (see Fig. 5); 
as expected, stronger the group diffusion, more 
concentrated on small sizes the quasi-distribu-
tion, because the group diffusion plays against 
the emergence of CP.

Regarding the effect of the size of the migrat-
ing groups — measured by the maximum migrat-
ing fraction αm — on the quasi-distribution of 
the metapopulation size (see Fig. 6); when αm is 
small, our metapopulation model can be viewed 
as a model without group dispersal. Here, in con-
trast to the two preceding analyses, we observe 
a non-monotonous effect of αm: the quasi-dis-
tribution is concentrated on small sizes of the 
metapopulation for large and small values of αm, 
whereas it is concentrated on larger sizes of the 
metapopulation for intermediate values of αm. 
Heuristically, large values of αm plays against the 
survival of SP; small values of αm plays against 
the emergence of CP; whereas intermediate 
values of αm may allow both the survival of SP 
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and the emergence of CP. The non-monotonous 
effect of αm can also be observed on the expected 
time to extinction: the intermediate value αm = 
0.3 leads on average to longer existence of the 
metapopulation (see Fig. 7). Finally, it has to be 
noted that the non-monotonous effect of αm may 
not be observed when the other parameters are 
fixed to other values than those used to create 
Fig. 6.

Discussion

Although group dispersal is a phenomenon asso-
ciated with many species, how metapopulation 
turnover and size may be influenced by the size 
of the dispersing group has not been previously 
investigated. Here, we showed how sensitive 
metapopulation dynamics are to the size of the 
dispersing group. Below we discuss our finding 
in more detail and outline some future key areas 
of research.

To understand how metapopulation dynamics 
are affected by the size of the dispersing group, 
we built a temporal metapopulation model incor-
porating group dispersal and an Allee effect. 
Using the framework of Stochastic Patch Occu-
pancy Models (SPOM) initially developed by 
Ovaskainen and Hanski (2004a), we character-
ized the metapopulation dynamics as a func-

tion of the Allee effect, group diffusion and 
group size, which allowed us to identify the 
conditions under which group dispersal pro-
motes metapopulation dynamics. Heuristically 
we showed that larger group sizes decrease the 
probability of survival of the source popula-
tion while small group sizes decrease the prob-
ability of successful establishment. Our results 
demonstrate that intermediate group sizes may 
lead to larger and more sustainable metapopula-
tions in the presence of an Allee effect. For any 
small population, extinction risk is inversely 
proportional to population size (Lande 1993) due 
to the effects of demographic stochasticity and 
Allee effects. Demographic stochasticity is the 
randomness associated with individuality (Fox 
2005), and its impact is most prevalent in small 
populations because such stochastic variation 
averages out in larger ones. Allee effects come 
into play when below a threshold population 
size, density dependence on population growth 
goes from negative to positive (e.g., when mates 
become rare, reproduction cannot happen). Mate 
availability has also been considered an impor-
tant factor for obligately outcrossing species, 
especially those that are also short-lived (Cour-
champ et al. 1999). In general, Allee effects are 
expected to play a major role in the formation of 
a species’ geographic range (Keitt et al. 2001).

Fig. 7. Expected time to extinction of the metapopula-
tion, conditional on the initial metapopulation size, for 
different values of the maximum migrating fraction αm. 
The other parameters are fixed to αd = 0.5,  = 0.01, 
ν = 0.001, η = 1, λmin = 0.5, β = 100, γ = 1, and Nmax = 
100.
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Fig. 6. Quasi-distribution of the metapopulation size for 
different values of the maximum migrating fraction αm. 
The other parameters are fixed to αd = 0.5,  = 0.01, 
ν = 0.001, η = 1, λmin = 0.5, β = 100, γ = 1, and Nmax = 
100.
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For passive airborne dispersal — such as 
pollen and spore dispersal — the physical envi-
ronment has been considered crucial for deter-
mining the dispersal process (Aylor 1990). In 
our model we find that when the diffusion of the 
migrating fraction is large, at least one of the 
two populations goes extinct. When the migrat-
ing fraction is small, the source population sur-
vives and the colonizing population vanishes 
because of the diffusion. Alternatively, when the 
migrating fraction is large, the source population 
vanishes and the colonizing population emerges 
despite the diffusion. Given how variable physi-
cal conditions affecting the dispersal process can 
be, this is expected to generate spatio-temporal 
variation in real biological systems (Aylor 1990). 
Although our model has been developed for 
passively dispersing organisms, such condition-
dependency affecting the size of the dispersing 
group and the distance travelled is also charac-
teristic of actively dispersing species (Rousset 
2012), and hence, our results also offer insight 
for systems supporting active dispersal.

Investigating group dispersal within a meta
population framework is especially important for 
pathogens because it elegantly links the key con-
cepts of epidemiology: the location of suscepti-
ble hosts (i.e. habitat patches) and transmission 
between them (i.e. dispersal). Indeed, diseases 
are frequently aggregated across multiple spatial 
scales and the local populations are ephemeral 
as predicted by metapopulation theory (Grenfell 
& Harwood 1997, Burdon & Thrall 2014, Par-
ratt et al. 2016). However, while a large body 
of literature has explored large-scale geographi-
cal patterns of disease (Rambaut et al. 2008, 
Meentemeyer et al. 2012), and disease dynam-
ics within a metapopulation framework have 
been analysed in several recent papers (Keeling 
& Gilligan 2000, Antonovics 2004, Laine & 
Hanski 2006, Soubeyrand et al. 2009, Arino et 
al. 2012, Jousimo et al. 2014), few empirical 
studies have focused on the patterns and mecha-
nisms behind disease clusters at small spatial 
scales. Group dispersal may be one key process 
driving the observed disease patterns given that 
pathogen spores are well-known to form clumps 
in which they travel between hosts (Ingold 1971, 
Rapilly 1979, Ferrandino & Aylor 1987, Tack et 
al. 2014). The size of the dispersing unit has been 

shown to have a direct effect on successful estab-
lishment even in the obligate fungal pathogen, 
Podosphaera plantaginis, that persists as a highly 
dynamic metapopulation in the Åland Islands: 
larger spore groups have higher infectivity than 
solitary spores (Tack et al. 2014). Our results 
show how sensitive metapopulation dynamics 
are to the size of the dispersing group, and hence, 
investigating the epidemiological consequences 
of group size during pathogen transmission offers 
an exciting future venue of research.

In our modelling framework, the size of a 
source population is synchronously decreased 
by emigration and destruction processes. There-
fore, when a group dispersal episode occurs, the 
source population faces the Allee effect. How-
ever, for some taxa, the effect of dispersal on the 
size of the source population may be negligible. 
Thus, further investigation should be carried 
out to see if the non-monotonous effect of αm 
(the parameter governing group sizes) on the 
metapopulation size and the extinction time is 
modified when dispersal episodes do not imme-
diately affect the source populations. In this case, 
we should however take into account the limited 
capacity of source populations to emit groups of 
dispersers (different assumptions on the regen-
eration of source populations should be made). 
Ovaskainen (2017) considered such a case with 
a different modelling framework and highlighted 
that an intermediate group size maximizes the 
colonization rate. Based on this result, we can 
expect that the non-monotonous influence of αm 
might be preserved when dispersal episodes do 
not immediately affect the source populations. 
More generally, it would be interesting to inves-
tigate under which conditions the non-monoto-
nous influence of group size on metapopulation 
size and extinction time could be obtained in the 
absence of an Allee effect. From this perspec-
tive, let us evoke the work by Holt and Barfield 
(2006) and Barfield et al. (2015) on the influence 
of pathogen shedding on between-host pathogen 
dynamics. Pathogen shedding is the emission by 
the infectious host of pathogens throughout the 
course of infection, and can act as a loss term for 
the microbial population within the host (simi-
larly, in our model, the migrating and destroyed 
fractions are subtracted from the source popula-
tion). Holt and Barfield (2006) have shown that, 
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in some circumstances, an intermediate shed-
ding rate leads to the greatest overall growth 
rate of the pathogen. Thus, we could remove the 
Allee effect from our model and determine under 
which conditions on the regeneration of source 
populations a non-monotonous effect of group 
size is obtained.

In conclusions, understanding the conditions 
under which group dispersal promotes meta-
population persistence is vital for accurately 
accounting for variation in the size of the dis-
persing group, which can vary significantly both 
within and between species. Our results confirm 
that intermediate group sizes are most favoura-
ble to metapopulation size and persistence in the 
presence of an Allee effect. Our results suggest 
that the size of the dispersing unit may be under 
direct selection that may vary between con-
tinuous and fragmented landscapes. Establishing 
direct links between the fundamental axes of 
group size variation and realized (meta)popula-
tion dynamics offers an exciting future venue 
of research that is expected to yield key insights 
into the ecology and evolution of populations 
occupying spatially structured environments.
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Appendix

Transition probabilities

Increment +1

Let us define the following quantities:

	 A0(r) = 2π(  + νrη)λmin,
	 B1 = min{αm, 1 – λmin),
	 A1(r) = min{B1, max{A0(r), 1 – λmin – αd}},
	 B2 = min{αm, 1 – λmin – αd}, and
	 A2(r) = min{B2, A0(r)}.

When 1 ≤ Ni ≤ Nmax,

 . (A1)

We now compute the first integral in the last line of Eq. A1.

If 1 – λmin – αd ≥ B1, then, for all r ≥ 0, A1(r) = B1 and .

If 1 – λmin – αd < B1, then

•	 for all r  [0, R1], with , A0(r) ≤ 1 – λmin – αd and, consequently,

	 A1(r) = 1 – λmin – αd;

•	 for all r  (R1, R2], with , 1 – λmin – αd < A0(r) ≤ B1 and, consequently,

	 A1(r) = A0(r) = 2π(  ± νrη) λmin; 

•	 for all r > R2, A1(r) = B1 and .
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Therefore,

	 ,

where

	 ,

and F(·; a, s) is the cumulative distribution function of a random variable drawn from the gamma dis-
tribution with shape parameter a and scale parameter s.

We now compute the second integral in the last line of Eq. A1:

•	 for all r  [0, R3] , with , A0(r) ≤ B2 and, consequently, A2(r) = A0(r) =
	 2π(  ± νrη) λmin; 

•	 for all r > R3, A2(r) ≤ B2  and .
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Therefore,

	

where  and .

Consequently,

	 .	 (A2)

Increment –1

Let us define the following quantities:

	 A3 = 1 – λmin – αd,
	 B3(r) = max{A3, min{A0(r), αm}}.

When 1 ≤ Ni ≤ Nmax,

	 .



138	 Soubeyrand & Laine  •  ANN. ZOOL. FENNICI  Vol. 54

If αm < A3, then, for all r ≥ 0, B3(r) = A3 and .

If αm ≥ A3, then

•	 for all r  [0, R4], with , A0(r) ≤ A3, B3(r) = A3 and, consequently,

	 ;

•	 for all r  (R4, R5], with , A3 < A0(r) ≤ αm and, consequently, B3(r) =

	 A0(r) = 2π(  + νrη)λmin;

•	 for all r > R5, A0(r) > αm and, consequently, B3(r) = αm.

Therefore,

 , (A3)

where

 .


