13 research outputs found

    Sensitized photolysis of polychlorobiphenyls in alkaline 2-propanol: dechlorination of Aroclor 1254 in soil samples by solar radiation

    Get PDF
    Photodechlorination of Aroclor 1254 (1000 mg/L) in an alkaline 2-propanol solution at \lambda = 254 nm proceeded with a high quantum yield (\phi = 35.0) as determined by C1- release. The Aroclor was completely dechlorinated in 30 min and gave predominantly biphenyl (BP). After 20 h of solar irradiation, only partial dechlorination (25%) was observed, and no BP was formed. In the presence of phenothiazine (PT) sensitizer (5 mM) the Aroclor was completely dechlorinated to BP in 1 h at 350 nm (\phi = 2.33) and in 4 h by exposure to sunlight. Under the same conditions, Aroclor 1254 extracts of contaminated soil (730 mg/L) were dechlorinated in 2 h at 350 nm (\phi = 0.28) and in 20 h on exposure to sunlight. The photoreaction was completely quenched by oxygen and nitrobenzene (0.1 M). Moreover the Aroclor was thermally (ca. 80 "C) dechlorinated to BP using di-tert-butyl peroxide. A free-radical chain reaction was suggested in which the aryl radical anion, Ar(*-)-Cl, was a key intermediate in the dechlorination process

    Assessment of toxicity reduction after metal removal in bioleached sewage sludge

    No full text
    Sewage sludge can be applied to land to supply and recycle organic matter and nutrients. Trace elements in sludge, however, may accumulate in the soil with repeated sludge applications. Reducing metal content may therefore reduce the adverse effects of sludge application. The objective of this study was to evaluate the efficiency of bioleaching technology in reducing metal content and toxicity as measured by a battery of terrestrial and liquid-phase bioassays. Sludge\u2013soil mixtures simulating the application of sludge to land were tested by means of terrestrial bioassays, barley (Hordeum vulgare L.) seed germination (5 d) and sprout growth (14 d), lettuce (Lactuca sativa) seed germination (5 d), and worm (Eisenia andrei) mortality (14 d). Liquid-phase bioassays, Microtox\uae (Vibrio fischeri, 15 min), lettuce root elongation (L. sativa, 5 d), cladoceran mortality (Daphnia magna, 48 h), and SOS Chromotest (Escherichia coli) were used after elutriation of the sludge. Comparison of the bioassay results (except for D. magna) before and after treatment demonstrated that this bioleaching process reduced both sludge toxicity and metal content. In addition, lower Cu and Zn concentrations found in barley sprouts following treatment supported the assumption that the bioleaching process, by decreasing metal content and bioavailability, reduced sewage sludge toxicity. This study also emphasized the interest of using ecotoxicological bioassays for testing biosolids. In particular, the terrestrial bioassays after simulation of land application and the Microtox\uae test after sludge elutriation proved to be the most appropriate procedures.NRC publication: Ye

    Enhancement of pentachlorophenol biodegradation using organic and inorganic supports

    No full text
    The role of soil, straw, and sawdust as supports in enhancing pentachlorophenol (PCP) mineralization by an indigenous soil consortium was examined by assessing the bioavailability of the substrate and other nutrients. PCP sorption tests were conducted in the presence of sterile supports to evaluate PCP bioavailability. Indigenous biomass, practically free of soil particles, was prepared to test the influence of sterile soil and soil components on the mineralization of increasing PCP concentrations. Organic supports such as straw and sawdust were very good sorbents for PCP, resulting in a slow, continuous desorption of substrate, high mineralization rates, and reduced toxicity to the active biomass. Soil and clay retained less PCP and desorbed it in decreasing amounts. Soil was the best amendment to enhance the mineralization of 100\u2009mg/L PCP. Soil, soil extract, and the lowest-molecular-weight fraction of the soil extract facilitated the complete mineralization of 300\u2009mg/L of PCP with a lag time of about 9 days, compared to 21 days for the unamended culture. Addition of soil enhanced PCP mineralization by an indigenous consortium, probably because soil particles served as an adsorbent for the contaminant to decrease its toxicity, as a support for biomass colonization, and as a source of supplementary nutrients for the biomass. This concept is of importance, particularly for the production of active and resistant biomass for the biotreatment of contaminated soils.NRC publication: Ye

    Substrate interaction during aerobic biodegradation of creosote-related compounds in columns of sandy aquifer material

    Get PDF
    A column study was initiated to study the effect of phenanthrene, fluorene, and p-cresol on the aerobic biodegradation of carbazole in columns of sandy aquifer material. Biodegradation of the contaminant mixture was sequential in space with p-cresol being preferentially degraded, followed by phenanthrene, then the other compounds. Both p-cresol and phenanthrene were completely biotransformed to non-detectable levels during passage through the 46 cm sand column but some carbazole and fluorene persisted throughout the approximately 3 month experiments. Influent p-cresol (10000ppb) was the only compound that affected adaptation of the microbial community to carbazole biodegradation, but its effect was of little practical importance, amounting to a 4.5 day difference in carbazole breakthrough. However, when influent p-cresol was at high levels (70 000 ppb), biotransformation of the other co-substrates in the mixture never ensued because p-cresol caused complete dissolved oxygen depletion. Conversely, influent p-cresol ultimately enhanced biotransformation of the other co-substrates in the mixture when present at a concentration (10000ppb) that did not deplete all available oxygen. The concentrations of the other, more recalcitrant compounds, ranging between 33 and 238 ppb, were probably too low to support bacterial growth so that slow, limited biotransformation resulted, although addition of an auxiliary substrate (i.e. the p-cresol) stimulated their biotransformation. Under quasi-steady-state conditions, the presence of phenanthrene in the influent inhibited fluorene biotransformation and possibly carbazole biotransformation. Results of the present study demonstrated also that interactions identified in static batch microcosms and in a hydrodynamic saturated column system can differ.NRC publication: Ye
    corecore