666 research outputs found

    Lipreading and Covert Speech Production Similarly Modulate Human Auditory-Cortex Responses to Pure Tones

    Get PDF
    Watching the lips of a speaker enhances speech perception. At the same time, the 100 ms response to speech sounds is suppressed in the observer's auditory cortex. Here, we used whole-scalp 306-channel magnetoencephalography (MEG) to study whether lipreading modulates human auditory processing already at the level of the most elementary sound features, i.e., pure tones. We further envisioned the temporal dynamics of the suppression to tell whether the effect is driven by top-down influences. Nineteen subjects were presented with 50 ms tones spanning six octaves (125–8000 Hz) (1) during “lipreading,” i.e., when they watched video clips of silent articulations of Finnish vowels /a/, /i/, /o/, and /y/, and reacted to vowels presented twice in a row; (2) during a visual control task; (3) during a still-face passive control condition; and (4) in a separate experiment with a subset of nine subjects, during covert production of the same vowels. Auditory-cortex 100 ms responses (N100m) were equally suppressed in the lipreading and covert-speech-production tasks compared with the visual control and baseline tasks; the effects involved all frequencies and were most prominent in the left hemisphere. Responses to tones presented at different times with respect to the onset of the visual articulation showed significantly increased N100m suppression immediately after the articulatory gesture. These findings suggest that the lipreading-related suppression in the auditory cortex is caused by top-down influences, possibly by an efference copy from the speech-production system, generated during both own speech and lipreading.Peer reviewe

    The Stability Balloon for Two-dimensional Vortex Ripple Patterns

    Full text link
    Patterns of vortex ripples form when a sand bed is subjected to an oscillatory fluid flow. Here we describe experiments on the response of regular vortex ripple patterns to sudden changes of the driving amplitude a or frequency f. A sufficient decrease of f leads to a "freezing" of the pattern, while a sufficient increase of f leads to a supercritical secondary "pearling" instability. Sufficient changes in the amplitude a lead to subcritical secondary "doubling" and "bulging" instabilities. Our findings are summarized in a "stability balloon" for vortex ripple pattern formation.Comment: 4 pages, 5 figure

    Mental Action Simulation Synchronizes Action-Observation Circuits across Individuals

    Get PDF
    A frontoparietal action–observation network (AON) has been proposed to support understanding others' actions and goals. We show that the AON "ticks together" in human subjects who are sharing a third person's feelings. During functional magnetic resonance imaging, 20 volunteers watched movies depicting boxing matches passively or while simulating a prespecified boxer's feelings. Instantaneous intersubject phase synchronization (ISPS) was computed to derive multisubject voxelwise similarity of hemodynamic activity and inter-area functional connectivity. During passive viewing, subjects' brain activity was synchronized in sensory projection and posterior temporal cortices. Simulation induced widespread increase of ISPS in the AON (premotor, posterior parietal, and superior temporal cortices), primary and secondary somatosensory cortices, and the dorsal attention circuits (frontal eye fields, intraparietal sulcus). Moreover, interconnectivity of these regions strengthened during simulation. We propose that sharing a third person's feelings synchronizes the observer's own brain mechanisms supporting sensations and motor planning, thereby likely promoting mutual understanding.Peer reviewe

    Renal Stone Risk During Space Flight: Assessment and Countermeasure Validation

    Get PDF
    NASA has focused its future on exploration class missions including the goal of returning to the moon and landing on Mars. With these objectives, humans will experience an extended exposure to the harsh environment of microgravity and the associated negative effects on all the physiological systems of the body. Exposure to microgravity affects human physiology and results in changes to the urinary chemical composition during and after space flight. These changes are associated with an increased risk of renal stone formation. The development of a renal stone would have health consequences for the crewmember and negatively impact the success of the mission. As of January 2007, 15 known symptomatic medical events consistent with urinary calculi have been experienced by 13 U.S. astronauts and Russian cosmonauts. Previous results from both MIR and Shuttle missions have demonstrated an increased risk for renal stone formation. These data have shown decreased urine volume, urinary pH and citrate levels and increased urinary calcium. Citrate, an important urinary inhibitor of calcium-containing renal stones binds with calcium in the urine, thereby reducing the amount of calcium available to form calcium oxalate stones. Urinary citrate also prevents calcium oxalate crystals from aggregating into larger crystals and into renal stones. In addition, citrate makes the urine less acidic which inhibits the development of uric acid stones. Potassium citrate supplementation has been successfully used to treat patients who have formed renal stones. The evaluation of potassium citrate as a countermeasure has been performed during the ISS Expeditions 3-6, 8, 11-13 and is currently in progress during the ISS Expedition 14 mission. Together with the assessment of stone risk and the evaluation of a countermeasure, this investigation provides an educational opportunity to all crewmembers. Individual urinary biochemical profiles are generated and the risk of stone formation is estimated. Increasing fluid intake is recommended to all crewmembers. These results can be used to lower the risk for stone formation through lifestyle, diet changes or therapeutic administration to minimize the risk for stone development. With human presence in microgravity a continuing presence and exploration class missions being planned, maintaining the health and welfare of all crewmembers is critical to the exploration of space

    Rapidly Measured Indicators of Recreational Water Quality Are Predictive of Swimming-Associated Gastrointestinal Illness

    Get PDF
    Standard methods to measure recreational water quality require at least 24 hr to obtain results, making it impossible to assess the quality of water within a single day. Methods to measure recreational water quality in ≀ 2 hr have been developed. Application of rapid methods could give considerably more accurate and timely assessments of recreational water quality. We conducted a prospective study of beachgoers at two Great Lakes beaches to examine the association between recreational water quality, obtained using rapid methods, and gastrointestinal (GI) illness after swimming. Beachgoers were asked about swimming and other beach activities and 10–12 days later were asked about the occurrence of GI symptoms. We tested water samples for Enterococcus and Bacteroides species using the quantitative polymerase chain reaction (PCR) method. We observed significant trends between increased GI illness and Enterococcus at the Lake Michigan beach and a positive trend for Enterococcus at the Lake Erie beach. The association remained significant for Enterococcus when the two beaches were combined. We observed a positive trend for Bacteroides at the Lake Erie beach, but no trend was observed at the Lake Michigan beach. Enterococcus samples collected at 0800 hr were predictive of GI illness that day. The association between Enterococcus and illness strengthened as time spent swimming in the water increased. This is the first study to show that water quality measured by rapid methods can predict swimming-associated health effects

    Assessment of Immune Status, Latent Viral Reactivation and Stress during Long Duration Bed Rest as an Analog for Spaceflight

    Get PDF
    As logistical access for in-flight space research becomes more limited, the use of ground based spaceflight analogs for life science studies will increase. These studies are particularly important as NASA progresses towards the Lunar and eventually Mars missions outlined in the 2005 Vision for Space Exploration. Countermeasures must be developed to mitigate the clinical risks associated with exploration class space missions. In an effort to coordinate studies across multiple disciplines, NASA has selected 90-day bed rest as the analog of choice, and initiated the Flight Analogs Project to implement research studies with or without the evaluation of countermeasures. Although bed rest is not the analog of choice to evaluate spaceflight-associated immune dysfunction, a standard Immune Assessment was developed for subjects participating in the 90-day bed best studies. The Immune Assessment consists of: leukocyte subset distribution, T cell functional responses, intracellular cytokine production profiles, latent viral reactivation, virus specific T cell levels, virus specific T cell function, stress hormone levels and a behavioral assessment using stress questionnaires. The purpose of the assessment during the initial studies (without countermeasure) is to establish control data against which future studies (with countermeasure) will be evaluated. It is believed that some of the countermeasures planned to be evaluated in future studies, such as exercise, pharmacologic intervention or nutritional supplementation, have the ability to impact immune function. Therefore immunity will likely be monitored during those studies. The data generated during the first three control studies showed that the subjects in general did not display altered peripheral leukocyte subsets, constitutive immune activation, significant latent viral reactivation (EBV, VZV) or altered T cell function. Interestingly, for some subjects the level of constitutively activated T cells (CD8+/CD69+) and virus-specific T cells (CMV and EBV) both decreased during the studies. This likely reflects the isolation of the subjects (from an immunological perspective) and absence of everyday subclinical challenges to the immune system. Cortisol levels (plasma and saliva) did not vary significantly during the studies. This probably reflects a lack of physiological stress during the study and the stress of readaptation to the 1xG environment at R+1. These data demonstrate the absence of significant immune alteration during 90-day bed rest, and establish control data against which future studies (including countermeasures) may be compared

    Morphological Instabilities in a growing Yeast Colony: Experiment and Theory

    Get PDF
    We study the growth of colonies of the yeast Pichia membranaefaciens on agarose film. The growth conditions are controlled in a setup where nutrients are supplied through an agarose film suspended over a solution of nutrients. As the thickness of the agarose film is varied, the morphology of the front of the colony changes. The growth of the front is modeled by coupling it to a diffusive field of inhibitory metabolites. Qualitative agreement with experiments suggests that such a coupling is responsible for the observed instability of the front.Comment: RevTex, 4 pages and 3 figure

    Novel non-equilibrium critical behavior in unidirectionally coupled stochastic processes

    Full text link
    Phase transitions from an active into an absorbing, inactive state are generically described by the critical exponents of directed percolation (DP), with upper critical dimension d_c = 4. In the framework of single-species reaction-diffusion systems, this universality class is realized by the combined processes A -> A + A, A + A -> A, and A -> \emptyset. We study a hierarchy of such DP processes for particle species A, B,..., unidirectionally coupled via the reactions A -> B, ... (with rates \mu_{AB}, ...). When the DP critical points at all levels coincide, multicritical behavior emerges, with density exponents \beta_i which are markedly reduced at each hierarchy level i >= 2. This scenario can be understood on the basis of the mean-field rate equations, which yield \beta_i = 1/2^{i-1} at the multicritical point. We then include fluctuations by using field-theoretic renormalization group techniques in d = 4-\epsilon dimensions. In the active phase, we calculate the fluctuation correction to the density exponent for the second hierarchy level, \beta_2 = 1/2 - \epsilon/8 + O(\epsilon^2). Monte Carlo simulations are then employed to determine the values for the new scaling exponents in dimensions d<= 3, including the critical initial slip exponent. Our theory is connected to certain classes of growth processes and to certain cellular automata, as well as to unidirectionally coupled pair annihilation processes. We also discuss some technical and conceptual problems of the loop expansion and their possible interpretation.Comment: 29 pages, 19 figures, revtex, 2 columns, revised Jan 1995: minor changes and additions; accepted for publication in Phys. Rev.

    Local and global modes of drug action in biochemical networks

    Get PDF
    It becomes increasingly accepted that a shift is needed from the traditional target-based approach of drug development to an integrated perspective of drug action in biochemical systems. We here present an integrative analysis of the interactions between drugs and metabolism based on the concept of drug scope. The drug scope represents the set of metabolic compounds and reactions that are potentially affected by a drug. We constructed and analyzed the scopes of all US approved drugs having metabolic targets. Our analysis shows that the distribution of drug scopes is highly uneven, and that drugs can be classified into several categories based on their scopes. Some of them have small scopes corresponding to localized action, while others have large scopes corresponding to potential large-scale systemic action. These groups are well conserved throughout different topologies of the underlying metabolic network. They can furthermore be associated to specific drug therapeutic properties
    • 

    corecore