Patterns of vortex ripples form when a sand bed is subjected to an
oscillatory fluid flow. Here we describe experiments on the response of regular
vortex ripple patterns to sudden changes of the driving amplitude a or
frequency f. A sufficient decrease of f leads to a "freezing" of the pattern,
while a sufficient increase of f leads to a supercritical secondary "pearling"
instability. Sufficient changes in the amplitude a lead to subcritical
secondary "doubling" and "bulging" instabilities. Our findings are summarized
in a "stability balloon" for vortex ripple pattern formation.Comment: 4 pages, 5 figure