39 research outputs found

    Effet d'un apport de chaux sur un triticale cultivĂ© sur un vertisol magnĂ©sien : enquĂȘte agrologique effectuĂ©e le 11 septembre 1981 sur la propriĂ©tĂ© Magnin-Pierson Ă  Tontouta

    Get PDF
    Les rĂ©sultats de cette enquĂȘte agrologique effectuĂ©e sur 2 parcelles contigues d'un vertisol magnĂ©sien sous triticale, la premiĂšre amendĂ©e par 1,5 t/ha de CaO sous forme de chaux Ă©teinte, semblent indiquer un effet favorable du chaulage sur ce type de sol et pour cette culture : lamasse des parties aĂ©riennes de triticale Ă©tait de 9% plus Ă©levĂ©e sur la parcelle chaulĂ©e et les immobilisations correspondantes en Ca de 5%. L'enquĂȘte a confirmĂ© par ailleurs la trĂšs forte carence naturelle en phosphore de ce type de sol, le stock sol-plante (P assimilable Olsen de l'arumite -0 Ă  20 cm- plus le P des parties aĂ©riennes) Ă©tant de l'ordre de grandeur des apports de P par les engrais la mĂȘme annĂ©e

    Statut minĂ©ral d'un maĂŻs Ă  mi-cycle sur vertisol magnĂ©sien : enquĂȘte agrologique effectuĂ©e le 4 septembre 81 sur la propriĂ©tĂ© Magnin-Pierson Ă  Tontouta.

    Get PDF
    Cette Ă©tude prĂ©cise le statut minĂ©ral d'un maĂŻs Ă  mi-cycle cultivĂ© sur un vertisol magnĂ©sien de la rĂ©gion de Tontouta. Sont mis en relief notamment : une teneur en Ca des plants de ce champ beaucoup plus faible que celle des plants arrivĂ©s au mĂȘme stade de dĂ©veloppement sur un sol peu Ă©voluĂ© dĂ©rivĂ© d'alluvions rĂ©centes, mais avec un rapport Ca/Mg Ă©quilibrĂ© ; des variations de cette teneur en sens inverse de celles du Mg Ă©changeable du sol ; l'insuffisance des fertilisations apportĂ©es pour une production Ă©levĂ©e. Les deux premiers rĂ©sultats constituent des indices d'une dĂ©ficience calcique sur ce type de sol

    Pleistocene climate changes, and not agricultural spread, accounts for range expansion and admixture in the dominant grassland species <i>Lolium perenne</i> L.

    Get PDF
    International audienceAim: Grasslands have been pivotal in the development of herbivore breeding since the Neolithic and still represent the most widespread agricultural land use across Europe. However, it remains unclear whether the current large‐scale genetic variation of plant species found in natural grasslands of Europe is the result of human activities or natural processes. Location: Europe. Taxon: Lolium perenne L. (perennial ryegrass). Methods: We reconstructed the phylogeographic history of L. perenne, a dominant grassland species, using 481 natural populations, including 11 populations of closely related taxa. We combined Genotyping‐by‐Sequencing (GBS) and pool‐Sequencing (pool‐Seq) to obtain high‐quality allele frequency calls of ~500 k SNP loci. We performed genetic structure analyses and demographic reconstructions based on the site frequency spectrum (SFS). We additionally used the same genotyping protocol to assess the genomic diversity of a set of 32 cultivars representative of the L. perenne cultivars widely used for forage purposes. Results: Expansion across Europe took place during the WĂŒrm glaciation (12–110 kya), a cooling period that decreased the dominance of trees in favour of grasses. Splits and admixtures in L. perenne fit historical climate changes in the Mediterranean basin. The development of agriculture in Europe (7–3.5 kya), that caused an increase in the abundance of grasslands, did not have an effect on the demographic patterns of L. perenne. We found that most modern cultivars are closely related to natural diversity from north-western Europe. Thus, modern cultivars do not represent the wide genetic variation found in natural populations. Main conclusions: Demographic events in L. perenne can be explained by the changing climatic conditions during the Pleistocene. Natural populations maintain a wide genomic variability at continental scale that has been minimally exploited by recent breeding activities. This variability constitutes valuable standing genetic variation for future adaptation of grasslands to climate change, safeguarding the agricultural services they provide

    High-Throughput Genome-Wide Genotyping To Optimize the Use of Natural Genetic Resources in the Grassland Species Perennial Ryegrass (Lolium perenne L.)

    Get PDF
    The natural genetic diversity of agricultural species is an essential genetic resource for breeding programs aiming to improve their ecosystem and production services. A large natural ecotype diversity is usually available for most grassland species. This could be used to recombine natural climatic adaptations and agronomic value to create improved populations of grassland species adapted to future regional climates. However describing natural genetic resources can be long and costly. Molecular markers may provide useful information to help this task. This opportunity was investigated for Lolium perenne L., using a set of 385 accessions from the natural diversity of this species collected right across Europe and provided by genebanks of several countries. For each of these populations, genotyping provided the allele frequencies of 189,781 SNP markers. GWAS were implemented for over 30 agronomic and/or putatively adaptive traits recorded in three climatically contrasted locations (France, Belgium, Germany). Significant associations were detected for hundreds of markers despite a strong confounding effect of the genetic background; most of them pertained to phenology traits. It is likely that genetic variability in these traits has had an important contribution to environmental adaptation and ecotype differentiation. Genomic prediction models calibrated using natural diversity were found to be highly effective to describe natural populations for almost all traits as well as commercial synthetic populations for some important traits such as disease resistance, spring growth or phenological traits. These results will certainly be valuable information to help the use of natural genetic resources of other species

    Canonical correlations reveal adaptive loci and phenotypic responses to climate in perennial ryegrass

    Get PDF
    Germplasm from perennial ryegrass (Lolium perenne L.) natural populations is useful for breeding because of its adaptation to a wide range of climates. Climate‐adaptive genes can be detected from associations between genotype, phenotype and climate but an integrated framework for the analysis of these three sources of information is lacking. We used two approaches to identify adaptive loci in perennial ryegrass and their effect on phenotypic traits. First, we combined Genome‐Environment Association (GEA) and GWAS analyses. Then, we implemented a new test based on a Canonical Correlation Analysis (CANCOR) to detect adaptive loci. Furthermore, we improved the previous perennial ryegrass gene set by de novo gene prediction and functional annotation of 39,967 genes. GEA‐GWAS revealed eight outlier loci associated with both environmental variables and phenotypic traits. CANCOR retrieved 633 outlier loci associated with two climatic gradients, characterized by cold‐dry winter versus mild‐wet winter and long rainy season versus long summer, and pointed out traits putatively conferring adaptation at the extremes of these gradients. Our CANCOR test also revealed the presence of both polygenic and oligogenic climatic adaptations. Our gene annotation revealed that 374 of the CANCOR outlier loci were positioned within or close to a gene. Co‐association networks of outlier loci revealed a potential utility of CANCOR for investigating the interaction of genes involved in polygenic adaptations. The CANCOR test provides an integrated framework to analyse adaptive genomic diversity and phenotypic responses to environmental selection pressures that could be used to facilitate the adaptation of plant species to climate change

    La collecte, la conservation et la valorisation des ressources génétiques naturelles comme leviers de l'adaptation des espÚces fourragÚres aux nouveaux enjeux agro-environnementaux

    No full text
    Les espĂšces fourragĂšres font l’objet de programmes de sĂ©lection depuis plusieurs dĂ©cennies afin d’offrir des semences de haute valeur agronomique pour la crĂ©ation de prairies temporaires. La diversitĂ© de ces espĂšces prĂ©sente dans les prairies naturelles a fourni le matĂ©riel gĂ©nĂ©tique qui a permis d’initier les premiers programmes d’amĂ©lioration puis d’enrichir rĂ©guliĂšrement les pools de sĂ©lection. Pour cela, des campagnes de collecte de diversitĂ© naturelle ont Ă©tĂ© entreprises sur de vastes territoires. Nous esquissons la distribution spatiale de cette diversitĂ© Ă  trois Ă©chelles gĂ©ographiques (locale, rĂ©gionale et continentale) et nous indiquons comment les collections des centres de ressources gĂ©nĂ©tiques peuvent ĂȘtre exploitĂ©es pour contribuer aux nouveaux enjeux agro-environnementaux auxquels doivent faire face les prairies naturelles et semĂ©es.Forage grasses have been bred for several decades to create high performance cultivars to seed temporary meadows. The natural diversity existing for these species in natural meadows has provided the genetic material to start the first breeding programs and afterwards to reintroduce original diversity in breeding pools. Collection campaigns have hence been carried out to sample the natural diversity of forage grasses over wide territories. The spatial distribution of this natural diversity is outlined at three spatial scales (local, regional and continental). We suggest ways to use genebank collections in order to contribute to the next agro-environmental challenges that grasslands will have to face

    La conservation des ressources génétiques des plantes fourragÚres : quelle diversité génétique au sein des collections ?

    No full text
    National audienceThe establishment of collections (ex situ conservation of the genetic diversity) is a means of studying the structuration of this diversity, and gives the breeders access to sources of genetic variability which they may use in programmes of cultivar breeding. In the case of the pasture species and the related wild species, actions should be undertaken for the preservation of the natural sites themselves, whether under cultivation or not (in situ conservation). The management of the genetic resources in forage species and lawn species is part of a national policy of genetic resources, undertaken at the request of the 'Bureau of Genetic Resources'. A national collection has been constituted ; other collections are managed by INRA and/or by private breeders. The long-term conservation of large collections raises technical difficulties. It is possible to reduce the number of entries by conserving only a limited number of them (core collection) or by grouping them into pools ; in both cases it is necessary to have the best representation of the diversity present in the initial collection by studying its structuration beforehand.La caractĂ©risation et l’étude de la structuration de la diversitĂ© gĂ©nĂ©tique des espĂšces vĂ©gĂ©tales imposent le recours Ă  des expĂ©rimentations planifiĂ©es. Afin de mener Ă  bien de telles investigations, il est nĂ©cessaire de constituer des collections de ressources gĂ©nĂ©tiques et d’organiser leur conservation (conservation ex situ de la diversitĂ© gĂ©nĂ©tique). La mise en place de collections est aussi pour les sĂ©lectionneurs le moyen de disposer de "rĂ©servoirs" de variabilitĂ© gĂ©nĂ©tique pour les programmes de crĂ©ation variĂ©tale. Le maintien de collections ne doit cependant pas ĂȘtre considĂ©rĂ© comme le seul moyen efficace de conservation Ă  long terme de la diversitĂ© gĂ©nĂ©tique. Dans le cas des espĂšces prairiales et des espĂšces sauvages apparentĂ©es, le dĂ©veloppement d’actions de prĂ©servation des sites naturels, exploitĂ©s ou non, oĂč ces espĂšces sont spontanĂ©es (conservation in situ), ainsi que des programmes de gestion dynamique de la variabilitĂ© doivent ĂȘtre envisagĂ©s. La gestion des ressources gĂ©nĂ©tiques des espĂšces fourragĂšres et Ă  gazon s’inscrit dans le cadre d’une politique nationale des ressources gĂ©nĂ©tiques, mise en place sous l’impulsion du Bureau des Ressources GĂ©nĂ©tiques. Une Collection nationale a Ă©tĂ© constituĂ©e ; elle rassemble des variĂ©tĂ©s radiĂ©es des catalogues français, d’anciennes variĂ©tĂ©s de pays et des populations naturelles issues de prospections sur le territoire français. D’autres collections plus vastes font l’objet d’une gestion commune entre l’INRA et les obtenteurs privĂ©s, ou bien sont dĂ©tenues par l’INRA. La conservation des accessions d’une collection doit s’accompagner de l’enregistrement de donnĂ©es de passeport (origine, taxinomie, informations gĂ©ographiques et Ă©cologiques), ces informations Ă©tant le plus souvent complĂ©tĂ©es de donnĂ©es d’évaluation phĂ©notypique, voire de donnĂ©es de marquage gĂ©nĂ©tique. Durant la dĂ©cennie passĂ©e, des actions importantes ont Ă©tĂ© entreprises par l’INRA pour la prospection et l’étude de populations naturelles françaises de ray-grass anglais et de populations spontanĂ©es espagnoles de luzerne pĂ©renne. Ces Ă©tudes ont permis d’analyser la structuration de la diversitĂ© gĂ©nĂ©tique collectionnĂ©e, de prĂ©ciser les relations entre compartiment cultivĂ© et sauvage dans le cas de la luzerne, et d’initier des actions de conservation et de sĂ©lection. La conservation Ă  long terme de collections d’effectif important peut se heurter Ă  des difficultĂ©s techniques, qui rendent souhaitable une rĂ©duction du nombre d’entitĂ©s Ă  conserver. Ceci peut se rĂ©aliser en ne conservant qu’un nombre limitĂ© d’accessions (‘core collection’), ou bien en regroupant les accessions sous forme de pools ; dans les deux cas, il est nĂ©cessaire de reprĂ©senter au mieux la diversitĂ© de la collection initiale en s’appuyant sur une Ă©tude prĂ©alable de sa structuration

    Which recurrent selection scheme to improve mixtures of crop species? Theoretical expectations

    No full text
    In a context of increasing environmental challenges, there is an emerging demand for plant cultivars that are adapted to cultivation in species mixture. It is thus pressing to look for the optimization of selection schemes to grow species mixtures, and especially recurrent selection schemes which are at the core of the improvement of many plant species. We considered the case of two populations from different species to be improved by recurrent selection for their performances in mixture. We set up an analytical model of performances in mixture. We expressed the expected responses of the performances in mixture to one cycle of selection in the case of a Reciprocal Mixture Ability selection scheme and of two parallel selection schemes aiming to improve General Mixture Abilities or performances in pure stands. We numerically compared these selection schemes when half-sib or topcross progeny families of selection candidates are tested in mixture. Selection in pure stands appeared efficient within a limited range of genetic correlations between pure stand performance and mixture model effects. The Reciprocal Mixture Ability selection scheme was expected to be less efficient than parallel selections for General Mixture Ability in some situations. The last option enables to control the ratio of expected responses of species contributions to the mixture performance without bias when using selection indices. When more than two species are be improved for their performances in mixture, the advantage of parallel selections for General Mixture Ability is even more marked, providing that compensation trends between species are not too prevalent
    corecore