
Aberystwyth University

Canonical correlations reveal adaptive loci and phenotypic responses to climate
in perennial ryegrass
Blanco-Pastor, José Luis; Barre, Philippe; Keep, Thomas; Ledauphin, Thomas; Escobar-Gutiérrez, Abraham;
Roschanski, Anna Maria; Willner, Evelyn; Dehmer, Klaus J.; Hegarty, Matthew; Muylle, Hilde; Veeckman,
Elisabeth; Vandepoele, Klaas; Ruttink, Tom; Roldán-Ruiz, Isabel; Manel, Stéphanie; Sampoux, Jean Paul

Published in:
Molecular Ecology Resources

DOI:
10.1111/1755-0998.13289

Publication date:
2020

Citation for published version (APA):
Blanco-Pastor, J. L., Barre, P., Keep, T., Ledauphin, T., Escobar-Gutiérrez, A., Roschanski, A. M., Willner, E.,
Dehmer, K. J., Hegarty, M., Muylle, H., Veeckman, E., Vandepoele, K., Ruttink, T., Roldán-Ruiz, I., Manel, S., &
Sampoux, J. P. (2020). Canonical correlations reveal adaptive loci and phenotypic responses to climate in
perennial ryegrass. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.13289

Document License
CC BY-NC

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 28. Jun. 2022

https://doi.org/10.1111/1755-0998.13289
https://pure.aber.ac.uk/portal/en/persons/matthew-hegarty(15c1de17-54dc-48d5-a67c-97c0b37e2323).html
https://pure.aber.ac.uk/portal/en/publications/canonical-correlations-reveal-adaptive-loci-and-phenotypic-responses-to-climate-in-perennial-ryegrass(917d431d-d7f6-4bf8-af44-60aab171b8fb).html
https://pure.aber.ac.uk/portal/en/publications/canonical-correlations-reveal-adaptive-loci-and-phenotypic-responses-to-climate-in-perennial-ryegrass(917d431d-d7f6-4bf8-af44-60aab171b8fb).html
https://doi.org/10.1111/1755-0998.13289


1 

 

Canonical correlations reveal adaptive loci and phenotypic responses to 1 

climate in perennial ryegrass 2 

 3 

Short title: Climate and phenotype to detect adaptive loci 4 

 5 

J.L. Blanco-Pastor*1, P. Barre1, T. Keep1, T. Ledauphin1, A. Escobar-Gutiérrez1, A.M. Roschanski2, E. Willner2, K. J. 6 

Dehmer2, M. Hegarty3, H. Muylle4, E. Veeckman4, 5, 6, K. Vandepoele4, 5, 7, T. Ruttink4, I. Roldán-Ruiz4, 6, S. Manel8, 7 

J.P. Sampoux1 8 

 9 

1. INRAE, UR4 (URP3F), Centre Nouvelle-Aquitaine-Poitiers, 86600 Lusignan, France;  10 

2. Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Inselstr. 9, 23999 Malchow/Poel, 11 

Germany;  12 

3. Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, 13 

Aberystwyth, SY23 3FL Ceredigion, UK;  14 

4. Flanders Research Institute for Agriculture, Fisheries and Food (ILVO) - Plant Sciences Unit, 15 

Caritasstraat 39, 9090 Melle, Belgium; 16 

5. Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium;  17 

6. Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; 18 

7. Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium; 19 

8. CEFE, Univ. Montpellier, CNRS, EPHE-PSL University, IRD, Univ Paul Valéry Montpellier 3, Montpellier, 20 

France. 21 

 22 

Corresponding author 23 

José Luis Blanco‐Pastor, INRAE, UR4 (URP3F), 24 

Centre Nouvelle‐Aquitaine‐Poitiers, Le Chêne – RD 150 CS 80006, 86600 Lusignan, France. 25 

Telephone: +33549556031  26 

Email: jose-luis.blanco-pastor@inra.fr  27 

mailto:jose-luis.blanco-pastor@inra.fr


2 

 

Abstract 28 

Germplasm from perennial ryegrass (Lolium perenne L.) natural populations is useful for breeding because of its 29 

adaptation to a wide range of climates. Climate-adaptive genes can be detected from associations between 30 

genotype, phenotype and climate but an integrated framework for the analysis of these three sources of 31 

information is lacking. 32 

We used two approaches to identify adaptive loci in perennial ryegrass and their effect on phenotypic traits. 33 

First, we combined Genome-Environment Association (GEA) and GWAS analyses. Then, we implemented a new 34 

test based on a Canonical Correlation Analysis (CANCOR) to detect adaptive loci. Furthermore, we improved the 35 

previous perennial ryegrass gene set by de novo gene prediction and functional annotation of 39,967 genes. 36 

GEA-GWAS revealed eight outlier loci associated with both environmental variables and phenotypic traits. 37 

CANCOR retrieved 633 outlier loci associated with two climatic gradients, characterized by cold-dry vs mild-wet 38 

winter and long rainy season vs long summer, and pointed out traits putatively conferring adaptation at the 39 

extremes of these gradients. Our CANCOR test also revealed the presence of both polygenic and oligogenic 40 

climatic adaptations. Our gene annotation revealed that 374 of the CANCOR outlier loci were positioned within 41 

or close to a gene. Co-association networks of outlier loci revealed a potential utility of CANCOR for investigating 42 

the interaction of genes involved in polygenic adaptations. 43 

The CANCOR test provides an integrated framework to analyze adaptive genomic diversity and phenotypic 44 

responses to environmental selection pressures that could be used to facilitate the adaptation of plant species 45 

to climate change. 46 

 47 

Keywords: Adaptation, Agriculture, Climate Change, Ecological Genetics, Landscape Genetics, Quantitative 48 

Genetics. 49 

 50 

Introduction 51 

It is now widely acknowledged that droughts and heatwaves will become more frequent and more intense in 52 

Europe with climate change (Samaniego et al., 2018; Teuling, 2018) and that rising global temperature will have 53 
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a profound effect on natural plant populations and crops (Mora et al., 2015; Thuiller, Lavorel, Araújo, Sykes, & 54 

Prentice, 2005; Travis, 2016). Climate change will cause an increasing number of hot summers, will lengthen the 55 

growing season at high latitudes such as in the Nordic countries and will shorten it at southern latitudes such as 56 

in the Mediterranean region (Dai, 2013). Climate extremes, changes in the length of the growing season and their 57 

interaction constitute complex challenges for biodiversity conservation and plant breeding (Savolainen, Lascoux, 58 

& Merilä, 2013). 59 

Natural plant populations have used diverse survival strategies to adapt to a variety of climates at variable 60 

temporal and spatial scales (Brozynska, Furtado, & Henry, 2016; Godfray et al., 2010; Henry & Nevo, 2014; 61 

Hodgkin & Bordoni, 2012). However, plant breeding has only used a tiny fraction of the genetic diversity available 62 

within the entire gene pool of the species and the genetic diversity in cultivated gene pools is low compared to 63 

that harbored by natural populations (Blanco-Pastor et al., 2019; Brozynska et al., 2016; Redden et al., 2015; 64 

Warschefsky, Penmetsa, Cook, & von Wettberg, 2014). As a consequence, natural populations are one of the 65 

most critical assets to address climate change adaptation of species used in agriculture. As wild plant populations 66 

have evolved to cope with changes in their environment by means of natural selection, they constitute useful 67 

sources of diversity that can be used to improve crop resistance to extreme climatic conditions (FAO, 2015; 68 

Redden et al., 2015; Vincent et al., 2013; Warschefsky et al., 2014).  69 

One promising strategy to create plant genotypes adapted to extreme climatic conditions is to identify loci 70 

responsible for adaptation in stress-tolerant natural populations. This strategy has become feasible thanks to 71 

recent advances in the development of genomic tools (Bansal, Lenka, & Mondal, 2014; de la Peña, Ebert, Gniffke, 72 

Hanson, & Symonds, 2011) and predictive statistical approaches (Manel et al., 2018). However, the agronomic 73 

performance of natural populations is in general lower than that of commercial varieties. It would thus be 74 

particularly challenging to create improved gene pools from natural populations that would combine adaptation 75 

to particular climatic conditions and sufficient value for cultivation. Often, a compromise needs to be found 76 

between climatic adaptation and agronomic value, as an adaptive gene might have negative pleiotropic effects 77 

on other traits or might be in linkage disequilibrium with genes of agronomic interest (i.e. linkage drag, Zamir, 78 

2001). To account for these issues, a primary step in breeding programs that focus on adaptation to climatic 79 

threats is the identification of the genomic diversity responsible for adaptation and the documentation of its 80 

relationship with phenotypes (Shukla & Mattoo, 2013). This documentation is essential because phenotypic 81 
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variation is the ultimate driver of both climate adaptation and agronomic value (Rieseberg, Widmer, Arntz, & 82 

Burke, 2002; Sampoux, Barre, & Litrico, 2014). But it is also challenging because adaptive phenotypic responses 83 

may be determined by a large number of loci of small effect (polygenic traits) that are difficult to identify with 84 

current analytical approaches (Berg & Coop, 2014; Berg et al., 2019; Pritchard & Di Rienzo, 2010; Santure & 85 

Garant, 2018; Savolainen et al., 2013). 86 

The combination of the univariate association methods Genome-Wide Association Studies (GWAS) and Genome-87 

Environment Association analyses (GEA) has proven to be an effective approach to reveal the genomic 88 

determinism of phenotypic traits and its relationship with climate adaptation (Anderson, Kono, Stupar, Kantar, 89 

& Morrell, 2016; Atwell et al., 2010; Contreras-Moreira et al., 2019; Fournier-Level et al., 2011; Talbot et al., 90 

2017). These methods have however some limitations. GWAS and GEA can only detect adaptive loci whose 91 

effects are not hidden by the confounding effect of neutral genetic structure (but see Caye, Jumentier, Lepeule, 92 

& François, 2019; Frichot & François, 2015; Frichot, Schoville, Bouchard, & François, 2013; Price, Lopez, Platts, & 93 

Lasky, 2020). More importantly, they only provide a partial discovery of adaptive diversity, as local adaptation 94 

can be largely determined by coordinated shifts in allele frequencies from multiple loci that are ignored when 95 

single-locus analyses are used (Berg & Coop, 2014; Exposito-Alonso et al., 2018; Josephs, Berg, Ross-Ibarra, & 96 

Coop, 2019). Although recent reviews have stressed the relevance of multivariate analyses that integrate 97 

environmental, genotypic and phenotypic data to uncover adaptive loci with small-effect while reducing the 98 

number of false positives (Barrett & Hoekstra, 2011; Hoban et al., 2016), a relatively small number of studies 99 

have achieved this integration so far (but see Berg & Coop, 2014; Exposito-Alonso et al., 2018). In that sense, 100 

ordination-based multivariate methods show promise as they can effectively detect multilocus selection by 101 

analyzing how groups of markers covary in response to multiple predictors (Forester, Lasky, Wagner, & Urban, 102 

2018).  103 

Grassland ecosystems are ubiquitous across temperate and tropical regions. They constitute the most extensive 104 

semi-natural habitat type accounting for 37% of the terrestrial land cover (Loveland et al., 2000). They are 105 

essential for the maintenance of biodiversity, for carbon sequestration and for the functioning of soil 106 

biogeochemical cycles (Hejcman, Hejcmanová, Pavlů, & Beneš, 2013; Jones & Donnelly, 2004; Tilman, Wedin, & 107 

Knops, 1996). In Europe, they cover 45% of the total agricultural area (Eurostat, 2017). Perennial ryegrass (Lolium 108 

perenne L.) is one of the most prevalent grass species in natural and semi-natural permanent grasslands across 109 
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Europe. Its high nutritive value for herbivores and its relatively good adaptation to grazing and trampling have 110 

long been recognized. Perennial ryegrass has thus extensively been bred during the past fifty years to deliver 111 

improved commercial varieties to sow and regenerate meadows as well as to set up and repair turf areas 112 

(Sampoux et al., 2013, 2011). While domestication of major crops started ca. 10000 years ago (Zohary, Hopf, & 113 

Weiss, 2012), conscious breeding in perennial ryegrass was initiated only during the last century (Blanco‐Pastor 114 

et al., 2019; Humphreys, Feuerstein, Vandewalle, & Baert, 2010; Sampoux et al., 2013, 2011). Because of this 115 

recent start of human selection, wild populations of perennial ryegrass may still contain potentially useful genetic 116 

resources that could be easily incorporated into breeding programs. With that regard, wild populations have 117 

extensively been collected in the last decades (Sampoux et al., 2014).  118 

Perennial ryegrass natural populations colonized Europe during the Quaternary glacial cycles while adapting to 119 

a wide range of environmental conditions (Barre et al., 2017; Blanco‐Pastor et al., 2019). Natural ecotypes of 120 

perennial ryegrass are today present over a wide range of climatic conditions across Europe and the Near-East 121 

(Blanco-Pastor et al., 2019). Cold, heat and drought stresses in the latitudinal and longitudinal extremes of Europe 122 

have likely led to the evolution of seasonal acclimation processes regulating climate adaptation in perennial 123 

ryegrass (Ergon et al., 2018; Thomas & James, 1999; Zhang, Fei, Arora, & Hannapel, 2010). Consequently, the 124 

extant wide natural diversity of perennial ryegrass should represent a valuable genetic resource for its adaptation 125 

to climate change (Sampoux et al., 2014). Past breeding activities in perennial ryegrass have mainly focused on 126 

improving forage yield, disease resistance and seed yield for the seed industry (Humphreys et al., 2010; Wilkins 127 

& Humphreys, 2003). In contrast, there have been fewer efforts to improve resistance to cold, heat and drought 128 

stresses (Charmet, Balfourier, Ravel, & Denis, 1993) and the specific phenotypic traits linked to climatic 129 

adaptation remain insufficiently documented (Barre et al., 2017; Ergon et al., 2018; but see Kovi et al., 2015).  130 

We used genomic and phenotypic data from 469 perennial ryegrass natural populations collected across the 131 

natural distribution range of the species (427 genebank accessions and 42 populations collected in situ) (see 132 

Blanco-Pastor et al., 2019). We combined Genotyping-by-Sequencing (GBS) and Highly Multiplexed Amplicon 133 

Sequencing (HiPlex) pool-Seq genotyping data, extensive phenotyping characterization in three experimental 134 

gardens in France, Belgium and Germany and fine-resolution environmental data at population collection sites. 135 

We implemented two data-driven analytical approaches. First, we used GEA combined with GWAS to identify 136 

putative climate adaptive loci. In a second approach, we implemented a statistical test that used the output of a 137 
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Canonical Correlation Analysis (CANCOR). The CANCOR (also abbreviated CCorA) is a multivariate analysis that 138 

reveals the co-inertia between two tables that describe the same set of observations (here the SNPs) with two 139 

different sets of possibly covarying variables (here environmental and phenotypic variables).  This approach 140 

analyzed simultaneously the environment at sites of origin of populations, their phenotype assessed in 141 

experimental gardens and the allelic frequencies of populations in order to identify the environmental variables 142 

imposing selection, the adaptive phenotypic responses and the adaptive loci.  143 

An extensively annotated gene set can help to identify climate adaptive genes and gene functions under 144 

selection. In view of that, we also improved the published perennial ryegrass gene set (Byrne et al., 2015) by de 145 

novo gene prediction and functional annotation of our genomic dataset. The CANCOR test and the new functional 146 

annotation provided a list of loci and molecular functions putatively linked to environmental adaptation that 147 

could be used in breeding programs to adapt perennial ryegrass to climate change.  148 

 149 

Materials and Methods 150 

Genetic material 151 

We examined 469 natural populations of perennial ryegrass that were either obtained from genebanks of 152 

agronomic research institutes from multiple countries or sampled in situ (Fig. 1 and Table S1). They were chosen 153 

to capture the extant natural genetic diversity of perennial ryegrass across its natural distribution range (Europe 154 

and the Near East). Full description of this set of populations can be found in Blanco-Pastor et al. (2019) named 155 

as the ‘L. perenne set’. 156 

 157 

Genotype data 158 

The genetic data was generated using a Genotyping-by-Sequencing (GBS) pool-Seq protocol (Blanco‐Pastor et 159 

al., 2019) based on the protocol of Byrne et al. (2013). We also re-sequenced from same pools 185 genomic 160 

regions of 80-140 bp positioned in, or near, 42 candidate genes putatively involved in environmental adaptation 161 

using Highly Multiplexed Amplicon Sequencing (HiPlex set) (see gene descriptions in Supporting Information, 162 
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Table S2, and further information in Supporting Information, Methods S1). For the GBS and HiPlex genotyping 163 

methods, balanced leaf material from c.a. 300 individuals per population were pooled before DNA extraction. 164 

Variants were called using the draft reference genome sequence of Byrne et al. (2015). Further details are 165 

available in the Supporting Information of Blanco-Pastor et al. (2019). We merged the two datasets (GBS and 166 

HiPlex) for analyses and performed a stringent filter on the minor allele frequency (MAF) to reduce the 167 

proportion of low frequency alleles. We retained SNP loci if their MAF was greater than 5% in at least 10 168 

populations. The final merged dataset comprised alternative allele frequencies (AAFs) of 189,968 SNP loci in the 169 

469 natural populations (Data S1 in Blanco-Pastor et al., 2020). The genotype data included 7.81% missing values 170 

that were imputed by using the mean allele frequency across populations. To avoid the effect of linkage 171 

disequilibrium in outlier discovery, we calculated the kinship-corrected correlation decay with increasing base 172 

pair distance for SNP markers belonging to a same scaffold. Based on the squared correlation decay curve, and 173 

in line with results from Keep et al. (2020), we considered that two loci were linked when the correlation between 174 

their alternative allele frequencies corrected for kinship was larger than 0.4. In such case, we only kept the locus 175 

displaying the best association with a phenotypic trait (lowest p-value in independent GWAS analyses). 176 

 177 

Environmental variables 178 

We collected a set of 112 variables documenting environmental conditions at sites of origin of the 469 studied 179 

populations: bioclimatic indices, Climate Change Detection Indices (ETCCDI), ecophysiological indices relevant to 180 

the life cycle of perennial ryegrass and soil data derived from the European Soil Database. An exhaustive overview 181 

of the environmental variables used is provided in Supporting Information, Table S3 and Methods S2. 182 

 183 

Phenotypic traits 184 

For the needs of phenotyping, 385 of the 469 perennial ryegrass populations were sown in experimental gardens 185 

in three locations: Poel Island (PO) in Germany on April 2015, Melle (ME) in Belgium on October 2015 and 186 

Lusignan (LU) in France on April 2015. In each of these three locations, each population was sown in three 1m² 187 

micro-swards (small plots sown as to reach plant density similar to real grasslands) arranged in three replicated 188 
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blocks. Trials were monitored until end of 2017 at PO and ME and until end of 2018 at LU. Micro-swards were 189 

cut (all aerial biomass higher than 7 cm above ground surface) regularly as to simulate common cutting regime 190 

of meadows used for green forage production or grazing. Weather conditions experienced at each trial location 191 

are displayed per season of each year in Supporting Information, Table S4. LU was characterized by severe water 192 

stress in summer. At PO, water stress was negligible in summer but cold stress was experienced during winter 193 

periods. ME was characterized by cool summer and mild winter conditions. Scores or measurements of 194 

phenotypic traits were recorded at the level of 1 m² micro-swards over all plants. A set of 145 phenotypic traits 195 

were recorded for 385 of the 469 perennial ryegrass populations. This set included traits related to vigor after 196 

sowing, morphology of plants, sward density, phenology, investment in sexual reproduction, dynamics of 197 

vegetative growth in spring, summer and autumn, regrowth after cutting, abiotic and biotic stresses related 198 

traits, dynamics of persistency, biochemistry of aerial biomass and leaf lamina traits. An exhaustive overview of 199 

the recorded phenotypic traits is provided in Supporting Information, Table S5 and Methods S3. 200 

 201 

The GEA-GWAS approach 202 

We performed a “triangulation” of association analyses (e.g. Talbot et al., 2017) to detect putative adaptive loci 203 

(Fig. 2a). In this approach, we looked for strong significant environment-genotype (GEA), phenotype-genotype 204 

(GWAS) and direct environment-phenotype associations to investigate whether putative adaptive loci were also 205 

potentially involved in the determinism of potentially adaptive traits.  206 
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To identify putative adaptive loci, we used a GEA linear mixed model similar to that of Yoder et al. (2014) 207 

(Supporting Information, Methods S4). We additionally used a GWAS linear mixed model to assess individual 208 

locus effect on a given phenotypic trait (Supporting Information, Methods S5). Both GEA and GWAS were run 209 

using the GWAS function of the ‘rrBLUP’ R package (Endelman, 2011). Among the significant loci revealed by the 210 

GEA analysis, we only considered as GEA-GWAS outlier those also significantly associated with a phenotypic trait 211 

in GWAS. We used a liberal threshold of False Discovery Rate (FDR) of 0.2 in both GEA and GWAS because a SNP 212 

needed to be significant in the two independent analyses to be considered as outlier. But we also report results 213 

using the more conservative FDR = 0.1. The final step of the “triangulation” approach was the assessment of 214 

direct correlations between environmental variables and phenotypic traits significantly associated with a same 215 

locus (direct correlations significant at p-value < 0.05). 216 

 217 

The CANCOR test 218 

As an alternative to investigate adaptive diversity, we implemented a Canonical Correlation Analysis (CANCOR) 219 

(Hotelling, 1936) (Fig. 2b) that analyzed simultaneously the association of genomic polymorphisms with 220 

environmental variables and phenotypic traits. The CANCOR multivariate analysis aims to reveal the co-inertia 221 

between two sets of possibly co-varying variables that describe the same set of experimental units (or 222 

observations). It looks for successive pairs of linear combinations from each set (canonical variables) that are 223 

maximally correlated (canonical correlations). Successive canonical variables in each set are constrained as to be 224 

uncorrelated. In a preliminary step, univariate regression models were implemented to regress the population 225 

alternative allele frequency (AAF) of each genotyped SNP locus on each environmental variable (values at sites 226 

of origin of populations) and on each phenotypic trait (mean values of populations). The CANCOR was then 227 

performed by considering the loci as the experimental units and the two sets of regression slopes of alternative 228 

allele frequencies, on environmental variables on the one hand (Y, Fig. 2b) and on phenotypic traits on the other 229 

hand (X, Fig. 2b), as the two sets of input variables to analyze (Supporting Information, Methods S6).  230 

We also ran an additional CANCOR in order to discern the general structure of correlation between 231 

environmental and phenotypic variables at the population level. In this analysis, the populations were considered 232 

as the experimental units and the value of environmental variables at sites of origin of populations on the one 233 
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hand, and the population means of phenotypic traits on the other hand, as the two sets of input variables to 234 

analyze. 235 

We ran the CANCOR analysis using the R package ‘vegan' (Oksanen et al., 2018). We tested the significance of 236 

outlier loci using a 2 test on Mahalanobis distances following the method of Luu et al. (2017) and Capblancq at 237 

al. (2018), which we call hereafter CANCOR test (Supporting Information, Methods S6), and a locus was 238 

considered as outlier at FDR = 0.1. 239 

To relate CANCOR outliers to putative adaptive traits and selective environmental variables, we first selected the 240 

CANCOR input variables best represented in the first two canonical dimensions, which were the only two retained 241 

by our CANCOR test. To simplify results we selected only input variables with projection norms larger than 0.95 242 

and 0.90 in the first environmental and phenotypic canonical planes, respectively (thresholds that returned a 243 

similar number of environmental and phenotypic variables). We finally retained the corresponding 244 

environmental and phenotypic variables if their correlation with the AAFs of at least one CANCOR outlier locus 245 

was sufficiently high (|r| > 0.5) (see Forester et al., 2018). We also explored the variable heading date (HEA_avg) 246 

despite its smaller projection norm because of its known importance for adaptation. In order to relate 247 

environmental selection pressures to phenotypic responses, we identified those environmental variables sharing 248 

their position in the CANCOR first two dimensions with the highest number of phenotypic traits. We further 249 

investigated these relationships by performing a linear regression of the phenotypic trait on the environmental 250 

variable using the trait mean values of populations and the value of environmental variables at sites of origin of 251 

populations. 252 

 253 

Co-association networks 254 

To visualize the interaction of SNPs in the bi-dimensional space defined by the CANCOR test, we adapted the 255 

approach of Lotterhos et al. (2018). In order to account for the information from both the alternative and 256 

reference alleles, we classified CANCOR outliers into two groups according to their position in the four CANCOR 257 

quadrants of the first phenotypic canonical plane. We grouped outliers from quadrants I and III since they were 258 

expected to be associated to adaptation to the same environmental gradients. For that, we changed the value 259 

of the loadings on the CANCOR axes of SNPs in quadrants III to their symmetrical value in quadrant I (negative 260 
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signs of the loadings on the axes 1 and 2 replaced by positive signs), as the position of SNPs in quadrant I or III 261 

only depends on whether the alternative or the reference allele is associated to adaptation. Similarly, we grouped 262 

outliers from quadrants II and IV and we changed the value of the loadings of SNPs in quadrants IV to their 263 

symmetrical value in quadrant II (positive sign of loadings on the axis 1 replaced by negative sign and negative 264 

sign on the axis 2 replaced by positive sign). Then we used these modified canonical loadings to calculate a matrix 265 

of pairwise Euclidean distances between SNPs. For each of the two groups, we used undirected graph networks 266 

to visualize modules of SNPs. Nodes were connected by edges according to three different thresholds of pairwise 267 

Euclidean distances (d) (< 1, < 0.5 and < 0.1). Co-association networks were visualized using the ‘igraph’ R package 268 

(Csardi & Nepusz, 2006). 269 

To demonstrate the utility of CANCOR for investigating the genetic basis of complex traits, for each of the two 270 

groups of SNPs, we performed two independent Gene Ontology (GO) enrichment analyses in the largest modules 271 

obtained with threshold of d < 0.1. The GO enrichment analyses were performed with agriGO 2.0 (Tian et al., 272 

2017). We used the Singular Enrichment Analysis (SEA) tool with a customized annotation of GO terms obtained 273 

from the new gene prediction and functional annotation (see below) and used the Locus ID (PLAZA3.0) as 274 

reference. We applied the Fisher’s exact test with the Benjamini-Hochberg FDR correction (FDR < 0.05) 275 

(Benjamini & Hochberg, 1995). 276 

 277 

Gene prediction and functional annotation 278 

The EVidenceModeler (EVM) (Haas et al., 2008) was used to improve completeness, without losing gene model 279 

accuracy, of the previously published set of 28,182 genes annotated on the L. perenne draft genome sequence 280 

(Byrne et al., 2015). For this, the annotation set was complemented with a less conservative set of gene 281 

predictions, orthology-guided transcript assemblies (Ruttink et al., 2013) and aligned proteomes of closely 282 

related species (Brachypodium distachyon, rice, maize and sorghum). All evidence tracks were generated using 283 

the GenomeThreader (Gremme, Brendel, Sparks, & Kurtz, 2005) with default settings and used as input for the 284 

EVM. The completeness was estimated using BUSCO (Simão, Waterhouse, Ioannidis, Kriventseva, & Zdobnov, 285 

2015) and the PLAZA 2.5 monocots core gene families (Van Bel et al., 2012). Functional annotation making use 286 

of ontologies was generated using InterPro2GO mapping, Gene Ontology (GO) projection between orthologs and 287 
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MapMan. Additionally, gene descriptions were added using AnnoMine, a homology-based text-mining approach 288 

(Van Landeghem, De Bodt, Drebert, Inzé, & Van de Peer, 2013). The gene annotation set has been made publicly 289 

available on the PLAZA comparative genomics platform version 4.5 Monocots 290 

(https://bioinformatics.psb.ugent.be/plaza/versions/plaza_v4_5_monocots/organism/view/Lolium+perenne). 291 

 292 

Results 293 

The GEA-GWAS approach 294 

A total of 10,220 and 15,854 loci were found as outliers with the GEA analyses at FDR = 0.1 and FDR = 0.2, 295 

respectively. A total of 330 and 543 loci were found as outliers with the GWAS analyses at FDR = 0.1 and FDR = 296 

0.2, respectively. Among these, only 18 and 49 outliers were significant in both the GEA and GWAS at FDR = 0.1 297 

and FDR = 0.2, respectively (Supporting Information, Table S6 and Table S7). Environmental and phenotypic 298 

variables most strongly associated with GEA-GWAS outliers at FDR = 0.1 were bd_subsoil, bio.ad.27, bio10, 299 

pet_wi, lmts, oc_topsoil, sis_wi, tawc_soil, tr_an; and AHD_me16, AMH_po17, CH400h_po16, CHs500_me17, 300 

HFY_lu15, HFY_po15, HST_lu17, SCD_wi1516_po, VAC_avg, VAC_lu17, respectively (Table 1 and Supporting 301 

Information, Table S7). At FDR = 0.1, phenotypic traits showing strongest association with the highest number of 302 

GEA-GWAS outliers were AMH_po17 (autumn canopy height, 6 outliers) and CH400h_po16 (spring canopy height 303 

400 growing-degree-days before spike emergence, 5 outliers) (Table 2 and Supporting Information, Table. S7). 304 

We found 8 outlier loci significantly associated at FDR = 0.1 with an environmental variable and a phenotypic 305 

trait whose direct correlation was significant (p-value < 0.05), and 34 outlier loci at FDR = 0.2. These loci were 306 

located in the proximity of 3 (FDR = 0.1) and 16 (FDR = 0.2) independent known genes (Supporting Information, 307 

Table S7). The InterPro domains, the Gene Ontology and the functional annotations for these genes are provided 308 

in Table S7 and more information on the genome sequence context flanking these genes is available via PLAZA 309 

monocots 4.5. Our genotyped loci included SNPs from 185 amplicon regions positioned in, or in the proximity of, 310 

42 candidate genes possibly involved in environmental adaptation (HiPlex set, Supporting Information, Table S2). 311 

Of these, the GEA-GWAS approach did not detect any SNP as putatively adaptive at FDR = 0.1. At FDR = 0.2, GEA-312 

GWAS detected 6 SNPs (from two candidate genes) as putatively adaptive but only one showed direct correlation 313 

https://bioinformatics.psb.ugent.be/plaza/versions/plaza_v4_5_monocots/organism/view/Lolium+perenne
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between the associated environmental and phenotypic variables (p-value < 0.05) (Supporting Information, Table 314 

S7). 315 

 316 

The CANCOR approach 317 

The CANCOR using the loci as experimental units (Fig. 3b-c) found the first 14 canonical correlations (‘CanCorr’ 318 

elements of the CCorA function of the R package ‘vegan’) larger than 0.9. The environmental input variables 319 

(regression slopes of AAFs on environmental variables) were highly correlated (|r| > 0.7) to the first and second 320 

environmental canonical variates for 44 and 35 environmental variables, respectively. Likewise, the phenotypic 321 

input variables (regression slopes of AAFs on phenotypic variables) were highly correlated (|r| > 0.7) to the first 322 

and the second phenotypic canonical variates for 35 and 37 phenotypic variables, respectively. In contrast, the 323 

CANCOR using populations as experimental units (Fig. 3d-f) only found the first two canonical correlations larger 324 

than 0.9. None of the correlations between environmental canonical variates and environmental variables were 325 

larger than 0.7. Only the first phenotypic canonical variate showed high correlation (|r| > 0.7) with four 326 

phenotypic traits. Populations from a same geographical origin tended to cluster together on the first phenotypic 327 

canonical plane. 328 

With the CANCOR test, we observed that the distribution of p-values was correct (flat distribution with 329 

enrichment only for the low values) exclusively when only the first two canonical dimensions were considered (K 330 

=2) and therefore only the results with K = 2 are discussed here (see Supporting Information, Methods S6). At 331 

FDR = 0.1, the CANCOR test retrieved 633 outlier loci (“CANCOR outliers”) which were located in the proximity 332 

of 158 independent known genes (Fig. 3a and Supporting Information, Fig. S2 and Table S8) among which 13 333 

were “HiPlex” loci. The CANCOR test only found four and 10 outlier loci that were also significant outliers in both 334 

the GEA and GWAS linear mixed models at FDR = 0.1 and FDR = 0.2, respectively (Supporting Information, Fig. 335 

S3). CANCOR outliers showing high correlation (|r| > 0.5) with environmental and phenotypic variables well 336 

represented in the first two canonical dimensions (projection norm of input variables larger than 0.95 and 0.90, 337 

respectively) are shown in Fig. 4.  338 

The two main environmental gradients revealed by the CANCOR test are highlighted in Fig. 5. A first gradient 339 

opposed the first and third quadrants of the first environmental canonical plane with increasing winter 340 
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temperature (tnn_wi, txx_wi, tasmax_wi, tasmin_wi, bio3 and bio6) and precipitation during the wet season 341 

(rx1day_au, sdii_au, sdii_sp, sdii_wi and bio.ad.20) towards the third quadrant (Fig. 5a) (mild-wet vs cold-dry 342 

winter gradient). A second gradient opposed the second and fourth quadrants with increasing duration of 343 

summer period (su_an), decreasing duration of the rainy periods in autumn (r01mm_au) and winter (r01mm_wi) 344 

and increasing mean diurnal temperature range (bio2, dtr_au) towards the fourth quadrant (Fig. 5a) (long 345 

summer and high diurnal temperature range vs long rainy season and low diurnal temperature range). Note that 346 

soil properties were not evidenced to contribute to co-inertia in this CANCOR analysis, at least in the first two 347 

canonical dimensions. 348 

In the first phenotypic canonical plane, the first quadrant was associated with canopy height during vegetative 349 

spring growth in the northernmost experimental garden (CH300h_po16, CH400h_po16) and with spike 350 

emergence date (HEA_avg) whereas the third quadrant was associated with winter damage (WID_po16) in the 351 

northernmost experimental garden (Fig. 5b). The second quadrant was associated with canopy height and 352 

canopy growth rate in summer (SMH_me16, SGR_po17 and SMH_po17) and in autumn (AGR_po17 and 353 

AMH_po17) in the two northern experimental gardens and with good persistency after winter in the 354 

northernmost one (SCD_wi1617_po) (Fig. 5b). The fourth quadrant was associated with seed production traits, 355 

namely aftermath heading (successive recurrent elongation of fertile stems) (AHD_lu16 and AHD_po17) and 356 

spike density (DST_avg, DST_lu17 and resDST_lu17), with lignin content in vegetative biomass (ADL_10_me17 357 

and ADL_avg) and with canopy growth rate in summer in the southernmost garden (SGR_lu16). Among the 358 

preceding traits, HEA_avg, ADL_10_me17, ADL_avg, DST_avg, DST_lu17 and resDST_lu17 were correlated (|r| > 359 

0.5) to a small number of outlier loci: 5, 3, 1, 3, 20 and 21 respectively (Fig. 4b). Other traits, namely AHD_lu16, 360 

AHD_po17, WID_po16, CH300h_po16, CH400h_po16, SGR_lu16, SGR_po17, SMH_po17, AGR_po17, AMH_po17 361 

and SCD_wi1617_po were correlated (|r| > 0.5) to a higher number of outlier loci (30 to 289) (Fig. 4b).  362 

An environmental variable and a phenotypic trait were considered as associated if they shared position in the 363 

first two canonical dimensions (see Fig. 5). Univariate regressions testing the association of pairs of 364 

environmental and phenotypic variables located in the same quadrant were highly significant in all cases (p-value 365 

< 0.05), with r² values ranging between 0.014 and 0.382. Plots of two types of regressions are displayed in Fig. 6: 366 

(i) phenotypic traits whose input variable is associated with the first or third quadrants of the first phenotypic 367 

canonical plane regressed on minimum temperature of winter period (tnn_wi) and (ii) phenotypic traits whose 368 
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input variable is associated with the second or fourth quadrants regressed on the number of summer days 369 

(su_an). These regressions confirmed a clear relationship between phenotypic means and values of the climatic 370 

variables at sites of origin of populations. Adaptation to cold stress in winter (low tnn_wi) was associated with 371 

high spring growth in cold conditions, late spike emergence and small damage during cold winters. Adaptation 372 

to long summer (high su_an), and likely to drought and heat stresses, was associated with high aftermath heading 373 

and spike density (reproductive investment), high lignin content in vegetative biomass, high growth in warm 374 

summer conditions, but low growth in cool summer and autumn conditions and low persistency after cold winter.  375 

Among the HiPlex set, the CANCOR test detected 13 loci within three different known genes as outliers at FDR = 376 

0.1 threshold (Supporting Information, Table S8). 377 

 378 

Co-association networks 379 

The two co-association analyses with threshold of d < 1 showed a single large module. With threshold d < 0.5, 380 

SNPs from both quadrants I-III and II-IV showed a single module together with three/four SNPs that were isolated 381 

or forming a small cluster. With this threshold at least three and two sub-modules could be observed in quadrants 382 

I-III and quadrants II-IV, respectively. Analyses with threshold d < 0.1 mainly resulted in singletons together with 383 

multiple small modules (Fig. 7).  384 

We did not find any significantly enriched GO term in the largest module from quadrants I-III at d < 0.1. However, 385 

we found two significantly enriched GO terms (FDR < 0.05) in the largest module from quadrants II-IV at the same 386 

threshold: GO:0055114 (oxidation-reduction process) and GO:0016491 (oxidoreductase activity). 387 

 388 

An improved gene annotation for identifying adaptive gene functions in Lolium 389 

perenne 390 

Previous gene space completeness analysis (Veeckman et al., 2016) showed that the gene space was well 391 

represented in the L. perenne genome assembly (previously published set of 28,182 annotated genes), but that 392 

gene prediction was incomplete, as compared to BUSCO (81.6%) and PLAZA 2.5 monocots core gene families 393 
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(CoreGF, 76.9%). Our additional gene annotation resulted in 39,967 consensus gene models. Gene space 394 

completeness was estimated at 92.6% (single: 89.0%, duplicated: 3.6%, fragmented: 2.5%, missing: 4.9%, no. of 395 

genes: 1440) using BUSCO and 89.4% using the PLAZA 2.5 CoreGF. This corresponded to an overall increase of 396 

completeness of more than 10% compared to the previously published gene annotation set. Functional 397 

annotation resulted in GO, InterPro and AnnoMine annotations for 23,879 L. perenne genes (59.8%). This final 398 

gene set was better suited for checking whether outlier loci from the CANCOR test matched candidate regions 399 

or were located in the proximity of a known gene, as it was more complete and more informative thanks to the 400 

improved functional annotation. Using the initial gene annotation set, 306 out of the 633 CANCOR outlier loci 401 

were positioned within or close to a gene, the average distance to the closest gene was 16 kb and 93 loci were 402 

positioned on scaffolds without a gene. Using the new gene annotation set resulted in 374 CANCOR outlier loci 403 

positioned within or close to a gene, the average distance to the closest gene dropped to 9 kb and only 30 loci 404 

were positioned on scaffolds without a gene. 405 

 406 

Discussion 407 

A novel approach to detect genomic and phenotypic adaptive diversity and to identify 408 

environmental factors imposing selection 409 

In our study, the combined GEA-GWAS approach was less effective than the CANCOR test in simultaneously 410 

detecting the environmental variable and phenotypic trait associated with a putative adaptive locus, even if the 411 

FDR thresholds used with GEA and GWAS were more liberal than the one used with CANCOR (GEA-GWAS: 49 412 

outliers at FDR = 0.2 with 34 showing significant direct environment-phenotype correlation at p-value < 0.05; 413 

CANCOR: 633 outliers at FDR = 0.1). Certain climate-genotype-phenotype associations found with the GEA-GWAS 414 

approach were also found with CANCOR (4 and 10 outlier SNPs found with both GEA-GWAS and CANCOR 415 

depending on FDR thresholds used for GEA-GWAS, see Supporting Information, Results S1). But in general 416 

different associations were found with the two methods. The GEA-GWAS approach detected interesting soil-417 

genotype-phenotype associations that were not detected by the CANCOR test, probably because the soil 418 

variables had little contribution in the first two canonical dimensions used for CANCOR outlier detection. GEA-419 
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GWAS outliers associated with soil variables were also associated with phenotypic traits describing the 420 

morphology of plants, investment in sexual reproduction, phenology or plant growth. These set of outliers could 421 

be of interest for eventual breeding programs that would aim to improve adaptation to soil features. 422 

In most cases, a large part of the phenotypic variance remains unexplained by loci detected by GWAS (Maher, 423 

2008), a problem that was notably encountered in perennial ryegrass (Harper et al., 2019). GWAS models control 424 

for false-positive associations due to population structure or genetic relatedness and inference statistics are 425 

corrected for multiple tests  (Yu et al., 2006). But because of these corrections, they are prone to miss causal loci 426 

with small effect involved in polygenic adaptations (Josephs et al., 2019) or other adaptive loci whose allelic 427 

distribution is confounded with population structure (Atwell et al., 2010), a trend that is particularly common in 428 

natural populations (Barton, Hermisson, & Nordborg, 2019; Gienapp et al., 2017; Storz, 2005). When compared 429 

with CANCOR, the GEA-GWAS method is likely more well suited to identification of major effect loci affected by 430 

a single environmental variable and a phenotypic response dominated by a single trait. On the other hand, 431 

CANCOR is not directly based on extreme associations of genotyped loci with single environmental or phenotypic 432 

variables. And it can be expected as more powerful to detect groups of co-varying small effect loci involved in 433 

response to multivariate environment and associated with multivariate phenotypic responses. 434 

Despite the high dimensionality of the genotype and the environment, univariate GEA methods have been the 435 

most popular approach to identify adaptive loci (Coop, Witonsky, Di Rienzo, & Pritchard, 2010; Frichot et al., 436 

2013; e.g. Joost et al., 2007; Lasky, Forester, & Reimherr, 2017; Stucki et al., 2017; Yoder et al., 2014). Meanwhile, 437 

it has been claimed that multivariate methods are far more effective at detecting weak polygenic adaptation, as 438 

these methods can analyze the covariation between groups of loci and multiple environmental predictors 439 

(Forester et al., 2018; Rellstab, Gugerli, Eckert, Hancock, & Holderegger, 2015). Many adaptive processes are 440 

indeed expected to be driven by weak polygenic effects as a result of recent selection on standing genetic 441 

variation that has not yet led to allele fixation or conditional neutrality (Berg & Coop, 2014; Le Corre & Kremer, 442 

2012; Savolainen et al., 2013; Tiffin & Ross-Ibarra, 2014). Several multivariate ordination techniques have 443 

recently been proposed to identify adaptive loci (Capblancq et al., 2018; Forester, Jones, Joost, Landguth, & 444 

Lasky, 2015; Grivet, Sork, Westfall, & Davis, 2008; Luu et al., 2017). Although the need of integrating phenotypic 445 

data in adaptation studies has recurrently been stressed (Barrett & Hoekstra, 2011; Berg & Coop, 2014; Exposito-446 

Alonso et al., 2018; Fournier-Level et al., 2011; Lasky et al., 2017; Steane et al., 2014), few studies investigating 447 
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environmental adaptation have combined phenotypic and environmental data so far. Here, we introduced a 448 

CANCOR test to integrate both types of data in a single genome scan.  449 

Multivariate analyses such CANCOR are not expected to be biased by collinearity. Keeping all available variables, 450 

as we did, showed that our CANCOR approach can be used in an exploratory manner and make possible to avoid 451 

the variable selection step. Environmental and phenotypic variables whose regression slopes are best correlated 452 

to the canonical variables revealed adaptive trends consistent with functional ecology expectations (Fig. 5).  453 

The CANCOR analysis using the loci as observations revealed roughly the same patterns of association between 454 

environment and phenotype as the CANCOR analysis using populations as observations. However canonical 455 

correlations were larger with the former analysis suggesting that adaptive trends are better revealed at the 456 

genomic level than at the population level (Fig. 3b-c and Fig. 3e-f). 457 

 458 

Adaptation to winter temperature  459 

The CANCOR test detected 36 to 169 outlier loci highly associated (|r| >0.5) with traits reporting for spring 460 

growth in a cold winter environment (CH300h_po16 and CH400h_po16) and 370 with winter damage during a 461 

cold winter (WID_po16). This result points to phenotypic adaptations to cold winter conditions (quadrant I, Fig. 462 

5) that are under highly polygenic determinism (Fig. 4b and Supporting Information, Table S8). The CANCOR 463 

analysis indicated that perennial ryegrass populations from areas with low minimum winter temperatures (low 464 

tnn_wi) are more resistant to winter damages (WID_po16) than others when grown in the cold winter conditions 465 

of Northern Europe (Fig. 6a). Previous research on perennial ryegrass also showed that populations from 466 

southern Europe were the most susceptible to cold stress (Lorenzetti, Tyler, Cooper, & Breese, 1971). The 467 

CANCOR test detected only five outlier loci associated with spike emergence date (HEA_avg), a trait also involved 468 

in adaptation to winter temperature (Fig. 4b and Supporting Information, Table S8). The proportion of 469 

phenotypic variance explained by these outlier loci (r2) ranged from 0.25 to 0.33 (univariate linear model 470 

phenotype ~ outlier locus, results not shown). This is in accordance with previous results which found a few major 471 

genes involved in the determinism of spike emergence date in perennial ryegrass (Armstead et al., 2004, 2008; 472 

Keep et al., 2020; Skøt et al., 2005, 2011). These previous studies identified a major QTL explaining 70% of the 473 

trait variation in a F2 mapping family. This QTL showed a high degree of synteny with the Hd3 spike emergence 474 
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date QTL region of rice LG6 that codes for the Flowering locus T. The gene prediction analysis found that the 475 

spike emergence date loci pointed out by our CANCOR test included three loci located within the Flowering locus 476 

T (LpFT3 gene in the L. perenne genome) (Skøt et al., 2011; Veeckman, Vandepoele, Asp, Roldán-Ruiz, & Ruttink, 477 

2016) and one locus located in its close proximity (at 272 bp downstream of the gene; Supporting Information, 478 

Table S8). Our results are thus in agreement with these previous findings and evidence that spike emergence 479 

date loci in perennial ryegrass evolved naturally along a winter temperature gradient (Fig. 6a). 480 

The functional ecology theory tells that adaptation to climatic stresses can be provided by escape, avoidance and 481 

tolerance strategies (Levitt, 1962). A tolerance strategy notably involves a strong reduction or cessation of growth 482 

during the stress period (Gillespie & Volaire, 2017). In perennial ryegrass, the peak of spring vegetative growth 483 

occurs during a 15 days period preceding spike emergence (Roschanski et al., 2018). Late spike emergence of 484 

perennial ryegrass populations from areas with low minimum winter temperature, and likely with long winter 485 

period, corresponds to an escape strategy in which the peak of vegetative spring growth is scheduled to escape 486 

the latest period of cold stress. Our results confirm that this important adaptive feature is determined by a small 487 

number of genes. On the other hand, small winter damage in the northernmost experimental garden for 488 

populations from low minimum temperature areas indicates additional tolerance mechanisms under highly 489 

polygenic determinism, which in turn favor a strong spring vegetative growth after a cold winter.  490 

 491 

Adaptation to summer length 492 

The CANCOR test detected 26 and 46 outlier loci associated (|r| >0.5) with aftermath heading (AHD_po17 and 493 

AHD_lu16), 3, 20 and 21 associated with spike density (DST_avg, DST_lu17 and resDST_lu17) and 33 with growing 494 

rate in a dry summer (SGR_lu16). These results revealed phenotypic adaptations to long summer duration 495 

(quadrant IV, Fig. 5) that are under polygenic determinism (Fig. 4b and Supporting Information, Table S8). Sixty-496 

one outliers in total were associated with aftermath heading or spike density and thus with investment in sexual 497 

reproduction.  498 

Our results are consistent with previous reports indicating that perennial ryegrass populations from dry habitats 499 

recover from drought more rapidly than those from moist habitats (Norris & Thomas, 1982). The CANCOR 500 

analysis evidenced that perennial ryegrass populations from areas with long summer season (high su_an), and 501 



20 

 

thus with high probability of exposure to drought stress, use several functional strategies to adapt to this climatic 502 

constraint as described by Volaire (2018). A dehydration escape strategy is likely provided by investment in sexual 503 

reproduction with high aftermath heading and spike density (Berger, Palta, & Vadez, 2016). Better growing rate 504 

in a long and dry summer could be due to the growth of numerous elongating stems from aftermath heading in 505 

relation with the escape strategy, but it can also be due to some features enabling stress avoidance such as root 506 

architecture optimizing soil water extraction (Volaire, 2018).  507 

The CANCOR test detected only two outlier loci associated (|r| >0.5) with lignin content (one associated with 508 

ADL_10_me17 and another one with ADL_10_me17 and ADL_avg) (Fig. 4b and Supporting Information, Table S8) 509 

with an r2 ranging from 0.26 to 0.27 (univariate linear model phenotype ~ outlier locus, results not shown). This 510 

suggests that the genetic determinism of lignin content involves some large-effect genes. According to our gene 511 

prediction analysis, one of these outlier loci is located in the coding region of the Anti-sigma-I factor RsgI6 gene 512 

which binds to and hydrolyses insoluble and soluble xylan substrates (Bahari et al., 2011), a group of 513 

hemicelluloses that is found in all cell walls of grasses (Mellerowicz & Gorshkova, 2011). High lignin content in 514 

vegetative biomass provides a high density of leaf tissues (high Leaf Dry Matter Content or LDMC), which has 515 

been reported to contribute to resistance to water stress (Garnier, Shipley, Roumet, & Laurent, 2001; Wilson, 516 

Thompson, & Hodgson, 1999).  517 

The adaptive features of populations from long summer areas have however counterparts in less summer-518 

stressful climates. A trade-off between summer growth in the southernmost experimental garden (SGR_lu16) 519 

and investment in sexual reproduction (AHD_po17, AHD_lu16, DST_avg,DST_lu17 and resDST_lu17) on the one 520 

hand, and summer growth (SMH_po17 and SGR_po17), autumn growth (AMH_po17 and AGR_po17) and winter 521 

persistency (SCD_wi1617_po) in the northernmost experimental garden on the other hand, was evidenced along 522 

the summer length gradient (Fig. 6b). The outlier loci correlated to these two kinds of phenotypic features were 523 

common to some extent (Fig. 4b), suggesting that this trade-off could be partly due to antagonistic pleiotropy 524 

(Exposito-Alonso, Burbano, Bossdorf, Nielsen, & Weigel, 2019; Savolainen et al., 2013). However, the number of 525 

outlier loci found for autumn growth in the northernmost experimental garden (AGR_po17) (289, 45,66% of all 526 

outliers) was notably higher than the number found for summer growth in the southernmost experimental 527 

garden (SGR_lu16) (44, 6,95% of all outliers) (Fig. 4b).  528 
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From an ecophysiological point of view, a strong investment in seed production may have a negative impact on 529 

winter survival of vegetative tillers (low SCD_wi1617_po) (Barre et al., 2017). Balfourier & Charmet (1991) also 530 

found correlations between aftermath heading in perennial ryegrass natural populations and the latitude, 531 

temperature and aridity factors of their sites of origin. They observed that populations from hot and dry regions 532 

tended to invest more in seed production, while populations from cool and wet areas had more vigorous 533 

vegetative growth (higher spring and autumn growth and persistence) and less aftermath heading. This trade-534 

off between vegetative and reproductive investments was also pointed out as a major lever of adaptation to 535 

warming conditions in other perennial grasses (Volaire, Barkaoui, & Norton, 2014).  536 

 537 

Lessons for perennial ryegrass breeding in the context of climate change 538 

During the 50 past years, perennial ryegrass has been subjected to intense breeding to create cultivars for sowing 539 

meadows. Breeding efforts in Europe have been successful to strongly reduce aftermath heading and this has 540 

resulted in a correlative improvement of autumn growth and persistency in cool climate areas of Europe. A 541 

correlative increase in forage quality was also obtained including a lower fiber (notably lignin) content in 542 

vegetative biomass (Sampoux et al., 2011). 543 

In the next decades, longer and drier summers are foreseen to occur in a large part of Europe due to 544 

anthropogenic climate change (Ergon et al., 2018). Although the length of the winter cold period is expected to 545 

shorten with milder average temperature, low temperatures events may still occur even quite late in the season 546 

(Dalmannsdottir et al., 2017; Ergon et al., 2018). Therefore, new efforts in breeding programs aiming to adapt 547 

perennial ryegrass to longer and drier summers should not be at the expense of adaptation to winter cold 548 

stresses. Our results showed that sets of different loci are involved in adaptation to long summer climate and 549 

adaptation to low winter temperatures. It should thus be possible to combine to a large extent these two kinds 550 

of adaptive features by genetic recombination.  551 

The co-association network analysis revealed modules for both analyses of SNPs from quadrants I-III and 552 

quadrants II-IV (at d < 0.1, see Fig. 7). The observation of these modules point to the presence of relatively 553 

independent groups of SNPs with homogeneous trends of variation under the environmental conditions defined 554 

by these quadrants. Some of these modules are likely linked to functional genes that collectively serve a similar 555 
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role of adaptation to cold winters (quadrants I-III) or long summers (quadrants II-IV). Indeed, we observed 556 

significantly enriched GO terms in the largest module of quadrants II-IV at d < 0.1. These GO terms were 557 

associated with redox regulation: oxidation-reduction processes (GO:0055114) and oxidoreductase activity 558 

(GO:0016491), which play an essential role in the acclimation of plants to abiotic stresses (Suzuki, Koussevitzky, 559 

Mittler, & Miller, 2012). This and other modules could be interpreted as reporting for adaptive genes with either, 560 

very close additive effects on phenotypes or with true interaction (epistasis), the latter meaning that adaptive 561 

alleles need to covary to have an effect on adaptation. All in all, co-association networks revealed a potential 562 

utility of CANCOR for investigating the interaction of adaptive loci involved in polygenic adaptations. Further 563 

experimental studies, higher density of sequencing and new progress in functional gene annotation would 564 

however be required to better understand the specific roles of adaptive genes and their interactions, and in 565 

general, the genomic architecture of environmental adaptation in perennial ryegrass. 566 

 567 

Concluding remarks 568 

Our pool-Seq GBS and HiPlex genotyping led to the identification of around 60.000 GBS tags of 86 bp per 569 

population (max. 80.000 GBS tags), in a genome of about 2.2 Gbp. Thus, only about 0.23% of the total genome 570 

size was effectively sequenced and markers from neighboring GBS tags were on average spaced about 40.000 bp 571 

apart. Given this fairly low GBS tag density and the expected short LD within outcrossing L. perenne natural 572 

populations (Blackmore et al., 2016; Keep et al., 2020), adaptive loci not in LD with GBS tags may have gone 573 

undetected. Whole genome re-sequencing would enhance the chance to detect more adaptive loci but would 574 

obviously require a higher cost for sequencing and computational power. Nevertheless, it is noteworthy that a 575 

significant part of the adaptive genetic variability has been detected with markers covering only 0.23% of the 576 

total genome size.  577 

A statistical relationship between environment, genotype and phenotype does not constitute the unequivocal 578 

identification of adaptive loci. The identification of putatively adaptive loci should be confirmed by the 579 

implementation of empirical selection experiments testing the fitness consequences of specific alleles or of their 580 

combination (Hoban et al., 2016; Pardo-Diaz, Salazar, & Jiggins, 2015). Despite its possible limitations, our 581 

approach is distinctive at simultaneously analyzing multivariate environment, genotype and phenotype data. 582 
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Because environment, genotype and phenotype are in essence mutually correlated and multi-dimensional, the 583 

ordination-based CANCOR test is a straightforward and efficient way to detect adaptive loci while at the same 584 

time identifying environmental gradients imposing selection and phenotypic traits responsible for adaptation.  585 
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Data Accessibility 

The DNA data is available in the NCBI Sequence Read Archive (BioProject PRJNA445949, Accessions SRR10243777 

to SRR10244245). Supplemental data is available at https://doi.org/10.5061/dryad.0p2ngf1xk. Supplemental 

data includes: 1) Table S1 - Accessions from the natural diversity of perennial ryegrass used in the study; 2) Table 

S2 - Re-sequenced genomic regions in candidate genes putatively involved in climatic adaptation using Highly 

Multiplex Amplicon Sequencing (HiPlex). The table includes gene descriptions, primers and amplicons in GFF 

format, and primer sequences and amplicons in BED format (region between primers); 3) Table S3 - Description 

and values of variables reporting for the environment at sites of origin of studied populations from the natural 

diversity of perennial ryegrass; 4) Table S4 - Seasonal climatic conditions at the three experimental gardens (LU, 

ME, PO) over the duration of the experiments; 5) Table S5 - Description and values of phenotypic traits recorded 

on studied populations from the natural diversity of perennial ryegrass in three experimental gardens; 6) Table 

S6 - Number of outlier loci per environmental variable according to the GEA and GWAS univariate mixed models; 

7) Table S7 - Outlier loci detected as strongly associated with environmental variables in GEA linear mixed models 

(FDR = 0.2) and with phenotypic traits in GWAS mixed models (FDR = 0.2); 8) Table S8 - CANCOR outlier SNP loci: 

Associated environmental variables and phenotypic traits and closest known gene including position, distance to 

outlier SNP, InterPro domain, gene ontology and functional annotation derived from gene prediction analysis; 

and 9) Data S1 - Genomic data: allele frequencies of 189,968 SNP loci in the 469 natural populations of perennial 

ryegrass. The remaining information that supports the findings of this study has been uploaded as a Supporting 

Information file: 1) Methods S1: HiPlex SNP set; 2) Methods S2: Environmental variables (climate-related 

variables and soil variables); 3) Methods S3: High throughput phenotyping; 4) Methods S4: GEA linear mixed 

models; 5) Methods S5: GWAS linear mixed models; 6) Methods S6: CANCOR test; 7) Results S1: Outlier loci 

detected by the CANCOR and the GEA-GWAS approaches. Code for running the CANCOR test and data files to 

replicate the analysis are available at https://doi.org/10.5281/zenodo.3992813. 
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Tables 

Table 1. Environmental variables found as associated with SNP loci of perennial ryegrass by either the GEA-GWAS or CANCOR methods (FDR = 0.1 with both methods). 
Additional information about environmental variables is available in Supplemental Information Methods S2 and Table S3. 

Environmental variable Type Description Unit Method† 

bd_subsoil Soil data Subsoil bulk density g cm-3 GEA-GWAS 

bio.ad.20 BIOCLIM derived variables Precipitation - evapotranspiration of wettest quarter mm CANCOR 

bio.ad.24 BIOCLIM derived variables Evapotranspiration of wettest quarter mm CANCOR 

bio.ad.27 BIOCLIM derived variables Evapotranspiration of coldest quarter mm GEA-GWAS 

bio2 BIOCLIM derived variables Mean diurnal range °C CANCOR 

bio3 BIOCLIM derived variables Isothermality (bio2 / bio7 × 100) % CANCOR 

bio4 BIOCLIM derived variables Temperature seasonality (standard deviation of average daily mean temperature per year-slice x100) °C × 100 CANCOR 

bio6 BIOCLIM derived variables Average daily minimum temperature (tasmin) of coldest 14/15 days period  °C CANCOR 

bio7 BIOCLIM derived variables Temperature Annual Range °C CANCOR 

bio10 BIOCLIM derived variables Mean temperature of warmest quarter °C GEA-GWAS 

dtr_au ETCCDI derived indices Average daily temperature range for autumn period °C CANCOR 

dtr_wi ETCCDI derived indices Average daily temperature range for winter period °C CANCOR 

lmts Ecophysiological indices Length of the heat stress period number of days GEA-GWAS 

oc_topsoil Soil data Topsoil organic carbon content % GEA-GWAS 

pet_wi Seasonal climate descriptors Cumulated evapotranspiration for winter period mm GEA-GWAS 

r01mm_au ETCCDI derived indices Count of days when precipitation ≥ 1mm for autumn period count of days CANCOR 

r01mm_wi ETCCDI derived indices Count of days when precipitation ≥ 1mm for winter period count of days CANCOR 

rx1day_au ETCCDI derived indices Maximum 1-day precipitation for autumn period mm CANCOR 

sdii_au ETCCDI derived indices Simple precipitation intensity index for autumn period mm CANCOR 

sdii_sp ETCCDI derived indices Simple precipitation intensity index for spring period mm CANCOR 

sdii_wi ETCCDI derived indices Simple precipitation intensity index for winter period mm CANCOR 

sis_wi Seasonal climate descriptors Average surface incident shortwave solar radiation per day for winter period W m-2 GEA-GWAS and 
CANCOR 

su_an ETCCDI derived indices Number of summer days during the year count of days CANCOR 

tasmax_wi Seasonal climate descriptors Average daily maximum temperature for winter period °C CANCOR 
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tasmin_wi Seasonal climate descriptors Average daily minimum temperature for winter period °C CANCOR 

tawc_soil Soil data Total available water content from Pedo-Transfer-Function mm GEA-GWAS 

tnn_wi ETCCDI derived indices Minimum value of daily minimum temperature for winter period °C CANCOR 

tr_an ETCCDI derived indices Number of tropical nights during the year count of nights GEA-GWAS 

txx_wi ETCCDI derived indices Maximum value of daily maximum temperature for winter period °C CANCOR 

†GEA-GWAS: variables found significantly associated with GEA-GWAS outlier loci (FDR = 0.1 with GEA and GWAS). Only variables with strongest association with outlier SNPs are shown. CANCOR: variables with norm 
of regression slope projection on the first environmental canonical plane greater than 0.95 and highly correlated (|r| > 0.5) to some CANCOR outlier loci (FDR = 0.1 with the CANCOR test). 

 

Table 2. Phenotypic traits found as potentially adaptive in natural populations of perennial ryegrass by either the GEA-GWAS or CANCOR methods (FDR = 0.1). Additional 
information about phenotypic traits is available in Supplemental Information Methods S3 and Table S5. 

Phenotypic trait Exp. 
garden(
s) 

Record 
year(s) 

Description Unit Method† 

ADL_10_me17 ME 2017 Acid Detergent Lignin content in aerial biomass dry 
matter 

% dry matter CANCOR 

ADL_avg ME 2017 Acid Detergent Lignin content in aerial biomass dry 
matter (average over record dates) 

% dry matter CANCOR 

AGR_po17 PO 2017 Autumn growth rate mm / growing-degree-days CANCOR 

AHD_lu16 LU 2016 Aftermath heading 1 (no fertile stem) to 9 (100% plants with fertile stems) CANCOR 

AHD_me16 ME 2016 Aftermath heading 1 (no fertile stem) to 9 (100% plants with fertile stems) GEA-GWAS 

AHD_po17 PO 2017 Aftermath heading 1 (no fertile stem) to 9 (100% plants with fertile stems) CANCOR 

AMH_po17 PO 2017 Autumn maximum height mm GEA-GWAS and 
CANCOR 

CH300h_po16 PO 2016 Canopy height 300 degree days before spike emergence mm CANCOR 

CH400h_po16 PO 2016 Canopy height 400 degree days before spike emergence mm GEA-GWAS and 
CANCOR 

CHs500_me17 ME 2017 Canopy height 500 degree days after start of spring 
growth 

mm GEA-GWAS 

DST_avg LU, PO 2017 Spike density (average over exp. gardens) 1 (no fertile stem) to 9 (maximum density) CANCOR 

DST_lu17 LU 2017 Spike density 1 (no fertile stem) to 9 (maximum density) CANCOR 
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HEA_avg LU, PO 2016, 2017 Spike emergence (heading) date (average over exp. 
gardens and record years) 

Growing-degree-days from start of spring growth (see Methods S6) CANCOR‡ 

HFY_lu15 LU 2015 Proportion of plants heading during sowing year 1 (no fertile stem) to 9 (100% plants with fertile stems) GEA-GWAS 

HFY_po15 PO 2015 Proportion of plants heading during sowing year 1 (no fertile stem) to 9 (100% plants with fertile stems) GEA-GWAS 

HST_lu17 LU 2017 Straw height cm GEA-GWAS 

resDST_lu17 LU 2017 Residual of regression of DST_lu17 on HEA_avg 1 (no fertile stem) to 9 (maximum density) CANCOR 

SCD_wi1516_po PO 2015 to 2016 Soil coverage loss throughout winter 2015-2016 at PO Difference between late and early scores, each recorded on a 1 (no living plants) to 
9 (best soil coverage) scale 

GEA-GWAS 

SCD_wi1617_po PO 2016 to 2017 Soil coverage loss throughout winter 2016-2017 at PO Difference between late and early scores, each recorded on a 1 to 9 (best soil 
coverage) scale 

CANCOR 

SGR_lu16 LU 2016 Summer growth rate mm / growing-degree-days CANCOR 

SGR_po17 PO 2017 Summer growth rate mm / growing-degree-days CANCOR 

SMH_me16 ME 2016 Summer maximum height mm CANCOR 

SMH_po17 PO 2017 Summer maximum height mm CANCOR 

VAC_avg LU, PO 2016, 2017 Vigor after cutting (average over exp. gardens and 
record dates) 

1 (no regrowth) to 9 (strongest regrowth) GEA-GWAS 

VAC_lu17 LU 2017 Vigor after cutting (average after two cutting dates at LU 
in 2017) 

1 (no regrowth) to 9 (strongest regrowth) GEA-GWAS 

WID_po16 PO 2016 Winter damage 1 (no damage) to 9 CANCOR 

†GEA-GWAS: traits found significantly associated with GEA-GWAS outlier loci (FDR = 0.1 with GEA and GWAS). Only variables with strongest association with outlier SNPs are shown. CANCOR: Traits with norm of 
regression slope projection on the first phenotypic canonical plane greater than 0.90 and highly correlated (|r| > 0.5) to some CANCOR outlier loci (FDR = 0.1 with the CANCOR test). 

‡ Trait included in the CANCOR results but with norm of regression slope smaller than 0.95. 
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Figures 

 

Fig. 1 – Spatial distribution of the 469 perennial ryegrass populations studied and locations of experimental 
gardens used for phenotyping. Isothermality values are displayed in background as an indicator of climatic 
variability across Europe. 

 

 
 

 

Fig. 2 – Two approaches used to detect adaptive loci. a) The GEA-GWAS approach: a locus is inferred as highly 
associated with both the environmental variable (GEA) and the phenotypic trait (GWAS). The environmental 
variable and the phenotypic trait should also be significantly correlated. b) The additive fixed effects (univariate 
regression slopes) of environmental variables and phenotypic traits on population alternative allele frequencies 
(AAFs) (yl) of genotyped loci make up Tables Y and X, respectively. The CANCOR analysis is performed using 
columns of Y and X as input variables and loci as observations (see further details in Supporting Information, 
Methods S6). After determining the number of canonical dimensions reporting for selection gradients 

(Supporting Information, Fig. S1), a 2 test on Mahalanobis distances is implemented to detect outlier loci (Fig. 
3a and Supporting Information, Fig. S2). 
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Fig. 3 – The CANCOR analyses. (a-c) Analysis using loci as observations. (d-f) Analysis using populations as 
observations. (b-c) Projections of slopes of univariate regressions of SNP alternative allele frequencies (AAFs) on 
environmental variables at sites of origin of populations (Y, see Fig. 2b) and on population mean values of 
phenotypic traits (X, see Fig. 2b) in the first environmental (b) and phenotypic (c) canonical planes, respectively. 
(e-f) Projections of environmental and phenotypic variables in the first environmental (e) and phenotypic (f) 
canonical planes, respectively. In (b) and (c), projections of Y and X input variables are displayed in black if their 
norm is greater than 0.95 and 0.9, respectively and if the correlation of the corresponding environmental or 
phenotypic variable with the population AAF of at least one outlier locus is such as |r| > 0.5.  The projection of 
the regression slope of the environmental variable HEA_avg is also displayed in black although its norm equals 
0.83. In (b-c) and (e-f), inner and outer circles mark 0.9 and 1 projection norm values respectively. Dots in (a) 
represent the coordinates of loci in the X (phenotypic) biplot of the first two canonical axes. Loci detected as 
significant by the CANCOR selection signal test (at FDR = 0.1) are displayed in purple. Dots in (d) represent the 
coordinates of populations in the X (phenotypic) biplot of the first two canonical axes and dot colors represent 
neutral genetic clusters (as per Blanco‐Pastor et al., 2019). Environmental and phenotypic variables whose 
regression slope projections are displayed in black in (b) and (c), respectively, are described in Table 1, Table 2 
and Fig. 5. Detailed information about these variables is provided in Supporting Information, Methods S2 and S3. 
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Fig. 4 – Outlier loci revealed by the CANCOR test whose alternative allele frequency is highly correlated (|r| > 
0.5) with environmental variables or phenotypic traits well represented in the first environmental and 
phenotypic canonical planes (projection norms of corresponding input variables > 0.95 and 0.90, respectively) or 
with HEA_avg. (a) Loci are plotted in the Y biplot representing the first two environmental canonical axes. (b) 
Loci are plotted in the X biplot representing the first two phenotypic canonical axes. Note that loci positions are 
computed on the basis of alternative allele frequencies. Purple and green colors indicate positive and negative 
correlations, respectively, between the locus alternative allele frequency and the environmental (a) or 
phenotypic (b) variable. See description of variables in Table 1 and Table 2. See detailed information on these 
variables in Supporting Information, Table S3, Table S5, Methods S2 and Methods S3.  

 



48 

 

 

Fig. 5 – Synthetic representation of main climatic adaptations in perennial ryegrass natural populations. (a) and 
(b) represent the first environmental (Y) and phenotypic (X) canonical planes, respectively, of the CANCOR 
analysis using loci as observations. Projections of input environmental and phenotypic variables (regression 
slopes) are displayed if their norm is larger than 0.95 and 0.90, respectively. In addition, the corresponding 
environmental and phenotypic variables should be highly correlated to the population alternative allele 
frequency (AAF) of at least one outlier locus (|r| > 0.5). The projection of the regression slope of the 
environmental variable HEA_avg is also displayed although its norm equals 0.83. Colors and roman numbers I, II, 
III and IV indicate quadrants in the CANCOR canonical planes and groups of associated climate and phenotypic 
variables. Note that arrow positions are computed on the basis of the correlation between the variable and SNP 
alternative allele frequencies. Also note that the diagonal from quadrant I (red) to III (green) represents a cold-
dry to mild-wet winter gradient whereas the diagonal from quadrant II (blue) to IV (orange) represents a long 
rainy season to long summer gradient. 
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Fig. 6 – Relationships between two main selective climatic gradients represented by minimum value of daily 
minimum temperature in winter (tnn_wi) and number of summer days in the year (su_an) at sites of origin of 
populations and key phenotypic responses (mean values of populations) depicted by scatter plots. Results of 
linear regressions of phenotypic traits on climatic variables are also displayed (r², p-values and trend lines). 
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Fig. 7 – Co-association modules for the outlier SNPs identified by the CANCOR test. Each co-association network 
represents a distinct module. Colors schemes are according to the four quadrants of the CANCOR analysis (Fig. 
5) and are displayed on the basis of alternative allele frequencies (SNPs from the same module can display 
different colors because one color represents the alternative allele as adaptive and the other color represents 
the reference allele as adaptive). Climatic gradients corresponding to environmental variables with highest 
scores in each quadrant are indicated. Phenotypic traits associated with these quadrants are displayed in Fig. 5b. 
(a), (b) and (c) show alternative networks obtained with three different thresholds of pairwise Euclidean 
distances (< 1, < 0.5 and < 0.1, respectively). Red arrows point to the modules used for the Gene Ontology 
enrichment analyses. 


