4,066 research outputs found

    Diffractive dissociation in proton-nucleus collisions at collider energies

    Full text link
    The cross section for the nuclear diffractive dissociation in proton-lead collisions at the LHC is estimated. Based on the current theoretical uncertainties for the single (target) diffactive cross section in hadron-hadron reactions one obtains sigma_SD(5.02 TeV) = 19.67 \pm 5.41 mb and sigma_SD(8.8 TeV) = 18.76 \pm 5.77 mb, respectively. The invariant mass M_X for the reaction pPb -> pX is also analyzed. Discussion is performed on the main theoretical uncertainties associated to the calculations.Comment: 04 pages, 2 figures. Final version to be published in European Physical Journal A - "Hadrons and Nuclei

    Light vector meson photoproduction in hadron-hadron and nucleus-nucleus collisions at the energies available at the CERN Large Hadron Collider

    Get PDF
    In this work we analyse the theoretical uncertainties on the predictions for the photoproduction of light vector mesons in coherent pp, pA and AA collisions at the LHC energies using the color dipole approach. In particular, we present our predictions for the rapidity distribution for rh0 and phi photoproduction and perform an analysis on the uncertainties associated to the choice of vector meson wavefunctionand the phenomenological models for the dipole cross section. Comparison is done with the recent ALICE analysis on coherent production of rho at 2.76 TeV in PbPb collisions.Comment: 07 pages, 6 figures. Version to be published in Phys. Rev.

    Exclusive photoproduction of quarkonium in proton-nucleus collisions at energies available at the CERN Large Hadron Collider

    Get PDF
    In this work we investigate the coherent photoproduction of psi(1S), psi(2S) and Upsilon (1S) states in the proton-nucleus collisions in the LHC energies. Predictions for the rapidity distributions are presented using the color dipole formalism and including saturation effects that are expected to be relevant at high energies. Calculations are done at the energy 5.02 TeV and also for the next LHC run at 8.8 TeV in proton-lead mode. Discussion is performed on the main theoretical uncertainties associated to the calculations.Comment: 05 pages, 5 figures. Version to be published in Phys. Rev.

    A model for the onset of transport in systems with distributed thresholds for conduction

    Full text link
    We present a model supported by simulation to explain the effect of temperature on the conduction threshold in disordered systems. Arrays with randomly distributed local thresholds for conduction occur in systems ranging from superconductors to metal nanocrystal arrays. Thermal fluctuations provide the energy to overcome some of the local thresholds, effectively erasing them as far as the global conduction threshold for the array is concerned. We augment this thermal energy reasoning with percolation theory to predict the temperature at which the global threshold reaches zero. We also study the effect of capacitive nearest-neighbor interactions on the effective charging energy. Finally, we present results from Monte Carlo simulations that find the lowest-cost path across an array as a function of temperature. The main result of the paper is the linear decrease of conduction threshold with increasing temperature: Vt(T)=Vt(0)(1−4.8kBTP(0)/pc)V_t(T) = V_t(0) (1 - 4.8 k_BT P(0)/ p_c) , where 1/P(0)1/P(0) is an effective charging energy that depends on the particle radius and interparticle distance, and pcp_c is the percolation threshold of the underlying lattice. The predictions of this theory compare well to experiments in one- and two-dimensional systems.Comment: 14 pages, 10 figures, submitted to PR

    Dynamics of curved thin-walled composite beams: uncertainty quantification due to randomly distributed thermal/hygroscopic aspects

    Get PDF
    In this paper we analyze the dynamic behavior of curved thin walled composite beams considering hygroscopic and thermal effects in the constitutive equations. A model of curved thin walled beam is employed as the basis for deterministic calculations which are performed in the context of finite element approaches. This model takes into account shear deformation due to bending and non-uniform torsion, also it incorporates the effect of hygro-thermal stresses and strains in the classical way, however considering them as uncertain due to the randomness associated with the material of the matrix resin (normally sensitive to the absorption of humidity) while the composite beam is constructed or while the structure is under service. The variability of the stiffness and mass properties of the composite beam is assumed as a random field along the structure taking into account the elastic coupling between bending, twisting, shear and axial motions together with the thermal and hygroscopics terms. The probabilistic model is constructed appealing to the Maximum Entropy Principle in order to derive the marginal probability density functions, according to increasing levels of entropy, i.e. with less number of constraints or less information. The analysis is performed in the frequency domain and the buckling loads by comparing the probabilistic models with different levels of information (i.e., given the mean and/or the bounds, etc.) with previously developed probabilistic approaches such as the ones with parametric uncertainty. Also the Entropy of the response is evaluated in order to quantify the propagation of uncertainty in the information of the model. A number of different hygroscopic sensitive composites are evaluated and the dynamic response of the structure constructed with them is compared with the homonymous case of a perfectly dry specimen of the same volumetric fraction of reinforcement.Publicado en: Mecánica Computacional vol. XXXV, no. 22Facultad de Ingenierí
    • …
    corecore