9 research outputs found

    The general position number and the iteration time in the P3 convexity

    Full text link
    In this paper, we investigate two graph convexity parameters: the iteration time and the general position number. Harary and Nieminem introduced in 1981 the iteration time in the geodesic convexity, but its computational complexity was still open. Manuel and Klav\v{z}ar introduced in 2018 the general position number of the geodesic convexity and proved that it is NP-hard to compute. In this paper, we extend these parameters to the P3 convexity and prove that it is NP-hard to compute them. With this, we also prove that the iteration number is NP-hard on the geodesic convexity even in graphs with diameter two. These results are the last three missing NP-hardness results regarding the ten most studied graph convexity parameters in the geodesic and P3 convexities

    A note on permutation regularity

    No full text
    The existence of a small partition of a combinatorial structure into random-like subparts, a so-called regular partition, has proven to be very useful in the study of extremal problems, and has deep algorithmic consequences. The main result in this direction is the Szemeredi Regularity Lemma in graph theory. In this note, we are concerned with regularity in permutations: we show that every permutation of a sufficiently large set has a regular partition into a small number of intervals. This refines the partition given by Cooper (2006) [10], which required an additional non-interval exceptional class. We also introduce a distance between permutations that plays an important role in the study of convergence of a permutation sequence. (C) 2011 Elsevier B.V. All rights reserved.FAPERGSFAPERGS [Proc. 10/0388-2]FAPESP [Proc. 2007/56496-3]FAPESPCNPqCNPq [Proc. 484154/2010-9, Proc. 308509/2007-2]FUNCAPFUNCAP [Proc. 07.013.00/09
    corecore