186 research outputs found
Regularization Independent Analysis of the Origin of Two Loop Contributions to N=1 Super Yang-Mills Beta Function
We present a both ultraviolet and infrared regularization independent
analysis in a symmetry preserving framework for the N=1 Super Yang-Mills beta
function to two loop order. We show explicitly that off-shell infrared
divergences as well as the overall two loop ultraviolet divergence cancel out
whilst the beta function receives contributions of infrared modes.Comment: 7 pages, 2 figures, typos correcte
On the equivalence between Implicit Regularization and Constrained Differential Renormalization
Constrained Differential Renormalization (CDR) and the constrained version of
Implicit Regularization (IR) are two regularization independent techniques that
do not rely on dimensional continuation of the space-time. These two methods
which have rather distinct basis have been successfully applied to several
calculations which show that they can be trusted as practical, symmetry
invariant frameworks (gauge and supersymmetry included) in perturbative
computations even beyond one-loop order.
In this paper, we show the equivalence between these two methods at one-loop
order. We show that the configuration space rules of CDR can be mapped into the
momentum space procedures of Implicit Regularization, the major principle
behind this equivalence being the extension of the properties of regular
distributions to the regularized ones.Comment: 16 page
Impaired fatty acid metabolism perpetuates lipotoxicity along the transition to chronic kidney injury.
Energy metabolism failure in proximal tubule cells (PTCs) is a hallmark of chronic kidney injury. We combined transcriptomic, metabolomic, and lipidomic approaches in experimental models and patient cohorts to investigate the molecular basis of the progression to chronic kidney allograft injury initiated by ischemia/reperfusion injury (IRI). The urinary metabolome of kidney transplant recipients with chronic allograft injury and who experienced severe IRI was substantially enriched with long chain fatty acids (FAs). We identified a renal FA-related gene signature with low levels of carnitine palmitoyltransferase 2 (Cpt2) and acyl-CoA synthetase medium chain family member 5 (Acsm5) and high levels of acyl-CoA synthetase long chain family member 4 and 5 (Acsl4 and Acsl5) associated with IRI, transition to chronic injury, and established chronic kidney disease in mouse models and kidney transplant recipients. The findings were consistent with the presence of Cpt2-Acsl4+Acsl5+Acsm5- PTCs failing to recover from IRI as identified by single-nucleus RNA-Seq. In vitro experiments indicated that ER stress contributed to CPT2 repression, which, in turn, promoted lipids' accumulation, drove profibrogenic epithelial phenotypic changes, and activated the unfolded protein response. ER stress through CPT2 inhibition and lipid accumulation engaged an auto-amplification loop leading to lipotoxicity and self-sustained cellular stress. Thus, IRI imprints a persistent FA metabolism disturbance in the proximal tubule, sustaining the progression to chronic kidney allograft injury
Biodiversity and benthic megafaunal communities inhabiting the Formigas Bank (NE Azores)
The Formigas Bank is an offshore seamount located in the easternmost part of the Azores archipelago (northeast Atlantic). It rises from abyssal depths to the surface, including a small set of islets. The bank holds multiple nature conservation designations, including a Natura 2000 Special Area of Conservation, an OSPAR Marine Protected Area, a RAMSAR site and a Nature Reserve declared under the Azores network of protected areas. The protection is based on the presence of sublittoral biotopes of high conservation interest, and importance as feeding grounds, spawning and nursery areas for many marine species, including fish, cetaceans and turtles. Although some information exists on the sublittoral communities occurring on the seamount summit (e.g., infralittoral Cystoseira and Laminaria beds, circalittoral hydrarian and sponge gardens, rich pelagic fauna), virtually no information was available on the deep-sea communities inhabiting the seamount flanks. Therefore, during the MEDWAVES cruise, the flanks of the Formigas bank have been surveyed using multibeam sonar, an ROV and oceanographic profiles, with the objective to characterise deep-sea biodiversity and megafaunal communities as well as the environment where they occur. This communication will present results from the video annotations of the ten dives made on the seamount slopes between ~500m and ~1,500 m depth. Diverse communities of sedentary suspension-feeding organisms were observed, with more than 20 cold-water coral species (mainly octocorals) being recorded, as well as many different sponge morphotypes. Dense coral garden habitats and sponge grounds were identified on several occasions, confirming the presence of vulnerable marine ecosystems (VMEs) and of ecologically or biologically significant areas (EBSAs). Differences in the abundance and composition of these habitats between the northern and southern dive transects are interpreted as reflecting substrate and geomorphological differences, as well as the potential influence of the Mediterranean Outflow Water (MOW). The new knowledge on deep-sea megafaunal communities reinforces the importance of this seamount as an area of high conservation interest
Cruise Summary Report - MEDWAVES survey. MEDiterranean out flow WAter and Vulnerable EcosystemS (MEDWAVES)
The MEDWAVES (MEDiterranean out flow WAter and Vulnerable EcosystemS) cruise targeted areas under the potential influence of the MOW within the Mediterranean and Atlantic realms. These include seamounts where Cold-water corals (CWCs) have been reported but that are still poorly known, and which may act as essential âstepping stonesâ connecting fauna of seamounts in the Mediterranean with those of the continental shelf of Portugal, the Azores and the Mid-Atlantic Ridge. During MEDWAVES sampling has been conducted in two of the case studies of ATLAS: Case study 7 (Gulf of CĂĄdiz-Strait of Gibraltar-Alboran Sea) and Case study 8 (Azores).
The initially targeted areas in the Atlantic were: the Gazul Mud volcano, in the Gulf of CĂĄdiz (GoC) area, included in the case study 7, and the Atlantic seamounts Ormonde (Portuguese shelf) and Formigas (by Azores), both part of the case study 8. In the Mediterranean the targeted areas were The Guadiaro submarine canyon and the Seco de los Olivos (also known as Chella Bank) seamount. Unfortunately it was not possible to sample in Guadiaro due to time constraints originated by adverse meteorological conditions which obligate us to reduce the time at sea focusing only in 4 of the 5 initially planned areas.
MEDWAVES was structured in two legs; the first leg took place from the 21st September (departure from CĂĄdiz harbour in Spain) to the 13th October 2016 (arrival in Ponta Delgada, SĂŁo Miguel, Azores, Portugal took place the 8th of October due to the meteorological conditions that obligated to conclude the first leg earlier as planned). during the Leg 1 sampling was carried out in Gazul, Ormonde and Formigas. The second leg started the 14th October (departure from Ponta Delgada) and finished the 26th October (arrival in MĂĄlaga harbour, Spain). MEDWAVES had a total of 30 effective sampling days, being 6 days not operative due to the adverse meteorological conditions experienced during the first leg which forced us to stay in Ponta Delgada from the 08th to the 13th October.
During MEDWAVES the daily routine followed a similar scheme, depending of course on the weather and sea conditions. The main activity during the day, starting early in the morning (around 08:00 AM, once the night activities were finished), was the ROV deployment. Generally a single ROV dive of around 8 hours was performed, however in several occasions two dives were carried out in the same day (see General station list, Appendix II). After the ROV (and sometimes between two dives) the Box Corer and/or Van Veen Grab and/or Multicore was deployed. After these activities, during the night CTD-Rosette deployments and MB was conducted. Accordingly to this schema the scientific personnel worked in the day or in the night watch.
A total of 215 sampling stations have been covered in MEDWAVES, using the following sampling gears: Multibeam echosounder, CTD-Rosette, LADCP, Box Corer, Van Veen Grab, Multicorer and a Remotely Operated Vehicle (ROV). Table 1 sumamrised the number of sampling stations conducted with each gear in each sampling zone. Additionally MB surveys have been conducted during the transits between area
Vulnerable marine ecosystems and biological features of Gazul mud volcano (Gulf of CĂĄdiz): A contribution towards a potential "Gulf of CĂĄdiz" EBSA
The Gulf of CĂĄdiz (GoC) represents an area of socioeconomic and scientific importance for oceanographic, geological and biological processes. An interesting feature of the GoC is the presence of a large amount of mud volcanoes (MVs) and diapirs that display different seepage, seabed types, oceanographic settings and biological communities. Detailed exploration of some MVs is still needed for detecting Vulnerable Marine ecosystems (VMEs) that seem to be rare in other areas of the GoC, improving the current knowledge on its biodiversity and ecological attributes. During different expeditions (MEDWAVES-ATLAS, INDEMARES-CHICA 0610 & 0412 and ISUNEPCA 0616) carried out in different years, biological samples and videos were obtained in Gazul MV (Spanish Margin of the GoC). The study of those samples and videos has revealed the presence of several ecologically important VMEs (e.g. 3 species of reef framework-forming corals, coral gardens including solitary scleractinians, gorgonians and antipatharians, as well as deep-sea sponge aggregations and chemosynthesis-related structures) and a large number of species occurring in this MV, including new records for the European margin, threatened species and non-previously described species. The combination of different environmental and anthropogenic factors allowed the present-day persistence of these VMEs in the GoC. Some of Gazul MV biological and ecological attributes fit several criteria of the Convention on Biological Diversity for EBSA description (e.g. 1,3,4,6) that, together with those of other areas of the GoC, may contribute to the future potential nomination of an EBSA in this area of the NE Atlantic
- âŠ