45 research outputs found

    Spinning faster: protein NMR at MAS frequencies up to 126 kHz

    Get PDF
    International audienceWe report linewidth and proton T 1 , T 1ρ and T 2 ′ relaxation data of the model protein ubiquitin acquired at MAS frequencies up to 126 kHz. We find a predominantly linear improvement in linewidths and coherence decay times of protons with increasing spinning frequency in the range from 93 to 126 kHz. We further attempt to gain insight into the different contributions to the linewidth at fast MAS using site-specific analysis of proton relaxation parameters and present bulk relaxation times as a function of the MAS frequency. For microcrystalline fully-protonated ubiquitin, inhomogeneous contributions are only a minor part of the proton linewidth, and at 126 kHz MAS coherent effects are still dominating. We furthermore present site-specific proton relaxation rate constants during a spinlock at 126 kHz MAS, as well as MAS-dependent bulk T 1ρ (1 H N)

    Quantifying proton NMR coherent linewidth in proteins under fast MAS conditions: a second moment approach

    Get PDF
    International audienceProton detected solid-state NMR under fast magic-angle-spinning (MAS) conditions is currently redefining the applications of solid-state NMR, in particular in structural biology. Understanding the contributions to the spectral linewidth is thereby of paramount importance. When disregarding the sample-dependent inhomogeneous contributions, the NMR proton linewidth is defined by homogeneous broadening, which has incoherent and coherent contributions. Understanding and disentangling these different contributions in multi-spin systems like proteins is still an open issue. The coherent contribution is mainly caused by the dipolar interaction under MAS and is determined by the molecular structure and the proton chemical shifts. Numerical simulation approaches based on numerically exact direct integration of the Liouville-von Neumann equation can give valuable information about the lineshape, but are limited to small spin systems (o12 spins). We present an alternative simulation method for the coherent contributions based on the rapid and partially analytic calculation of the second moments of large spin systems. We first validate the method on a simple system by predicting the 19 F linewidth in CaF 2 under MAS. We compare simulation results to experimental data for microcrystalline ubiquitin (deuterated 100% back-exchanged at 110 kHz and fully-protonated at 125 kHz). Our results quantitatively explain the observed linewidth per-residue basis for the vast majority of residues

    Ultra-high resolution 17O solid-state NMR spectroscopy of biomolecules : a comprehensive spectral analysis of monosodium L-glutamate·monohydrate

    Get PDF
    Monosodium L-glutamate monohydrate, a multiple oxygen site (eight) compound, is used to demonstrate that a combination of high-resolution solid-state NMR spectroscopic techniques opens up new possibilities for (17)O as a nuclear probe of biomolecules. Eight oxygen sites have been resolved by double rotation (DOR) and multiple quantum (MQ) NMR experiments, despite the (17)O chemical shifts lying within a narrow shift range of <50 ppm. (17)O DOR NMR not only provides high sensitivity and spectral resolution, but also allows a complete set of the NMR parameters (chemical shift anisotropy and electric-field gradient) to be determined from the DOR spinning-sideband manifold. These (17)O NMR parameters provide an important multi-parameter comparison with the results from the quantum chemical NMR calculations, and enable unambiguous oxygen-site assignment and allow the hydrogen positions to be refined in the crystal lattice. The difference in sensitivity between DOR and MQ NMR experiments of oxygen in bio/organic molecules is also discussed. The data presented here clearly illustrates that a high resolution (17)O solid-state NMR methodology is now available for the study of biomolecules, offering new opportunities for resolving structural information and hence new molecular insights

    1H line width dependence on MAS speed in solid state NMR – comparison of experiment and simulation

    Get PDF
    Recent developments in magic angle spinning (MAS) technology permit spinning frequencies of >= 100 kHz. We examine the effect of such fast MAS rates upon nuclear magnetic resonance proton line widths in the multi-spin system of b-Asp-Ala crystal. We perform powder pattern simulations employing Fokker-Plank approach with periodic boundary conditions and 1H-chemical shift tensors calculated using the bond polarization theory. The theoretical predictions mirror well the experimental results. Both approaches demonstrate that homogeneous broadening has a linear-quadratic dependency on the inverse of the MAS spinning frequency and that, at the faster end of the spinning frequencies, the residual spectral line broadening becomes dominated by chemical shift distributions and susceptibility effects even for crystalline systems

    Preparation and constitution of the crystalline silicic acid trimethylsilyl ester [(CH3)3Si]6Si6O15

    No full text
    A new crystalline compound has been synthesized by trimethylsilylation of tetraethylammonium silicate which was identified by means of gas chromatography, mass spectrometry, 29Si NMR and X-ray analysis to be a cage-like double three-ring silicic acid trimethylsilyl ester containing six inequivalent SiO4 tetrahedra and trimethylsilyl groups

    19

    No full text
    corecore