299 research outputs found

    Excess electron screening of remote donors and mobility in modern GaAs/AlGaAs herostructures

    Get PDF
    In modern GaAs/Alx_xGa1x_{1-x}As heterostructures with record high mobilities, a two-dimensional electron gas (2DEG) in a quantum well is provided by two remote donor δ\delta-layers placed on both sides of the well. Each δ\delta-layer is located within a narrow GaAs layer, flanked by narrow AlAs layers which capture excess electrons from donors but leave each of them localized in a compact dipole atom with a donor. Still excess electrons can hop between host donors to minimize their Coulomb energy. As a result they screen the random potential of donors dramatically. We numerically model the pseudoground state of excess electrons at a fraction ff of filled donors and find both the mobility and the quantum mobility limited by scattering on remote donors as universal functions of ff. We repeat our simulations for devices with additional disorder such as interface roughness of the doping layers, and find the quantum mobility is consistent with measured values. Thus, in order to increase the quantum mobility this additional disorder should be minimized.Comment: arXiv admin note: text overlap with arXiv:1804.0693

    Excess electron screening of remote donors and mobility in modern GaAs/AlGaAs heterostructures

    Get PDF
    In modern GaAs/AlxGa1−xAs heterostructures with record high mobilities, a two-dimensional electron gas (2DEG) in a quantum well is provided by two remote donor δ-layers placed on both sides of the well. Each δ-layer is located within a narrow GaAs layer, flanked by narrow AlAs layers which capture excess electrons from donors but leave each of them localized in a compact dipole atom with a donor. Still excess electrons can hop between host donors to minimize their Coulomb energy. As a result they screen the random potential of donors dramatically. We numerically model the pseudoground state of excess electrons at a fraction f of filled donors and find both the mobility and the quantum mobility limited by scattering on remote donors as universal functions of f. We repeat our simulations for devices with additional disorder such as interface roughness of the doping layers, and find the quantum mobility is consistent with measured values. Thus, in order to increase the quantum mobility this additional disorder should be minimized

    Microfungi in Drinking Water: The Role of the Frog Litoria caerulea

    Get PDF
    Microfungi were recovered from all parts of a municipal water distribution system in sub-tropical Australia even though virtually no colony-forming units were recovered from the treated water as it left the treatment plant. A study was then undertaken to determine the potential sources of the microfungal population in the distribution system. Observation of frogs (Litoria caerulea) using the internal infrastructure of a reservoir as diurnal sleeping places, together with observation of visible microfungal growth on their faecal pellets, led to an investigation of the possible involvement of this animal. Old faecal pellets were collected and sporulating fungal colonies growing on their surfaces were identified. Fresh faecal pellets were collected and analysed for microfungal content, and skin swabs were analysed for yeasts. It was found that the faeces and skin of L. caerulea carried large numbers of yeasts as well as spores of various filamentous fungal genera. While there are many possible sources of microfungal contamination of municipal drinking water supplies, this study has revealed that the Australian green tree frog L. caerulea is one of the important sources of filamentous microfungi and yeasts in water storage reservoirs in sub-tropical Australia where the animal is endemic

    Three Potential Sources of Microfungi in a Treated Municipal Water Supply System in Sub-Tropical Australia

    Get PDF
    Some microfungi are known to be opportunistic human pathogens, and there is a body of scientific opinion that one of their routes of infection may be water aerosols. Others have been implicated as causative agents of odours and off-tastes in drinking water. This study was undertaken to investigate three potential sources of microfungi in a treated, oligotrophic municipal water supply system in sub-tropical Australia. Formation of the microfungal component of developing biofilm on hard surfaces in water storage reservoirs was also assessed. Inside and outside air samples were collected from two reservoirs using two types of Burkard air samplers. Biofilm and soft sediment samples were collected from the inner surfaces of asbestos cement water pipes and from pipe dead ends respectively. These were analysed for microfungal growth and sporulation using Calcofluor White stain and epifluorescent microscopy. Artificial coupons of glass, PVC and concrete were immersed in two reservoirs to assess microfungal biofilm formation. This was analysed periodically using Calcofluor White stain and epifluorescent microscopy, cultures of coupon swabs and scanning electron microscopy. Fungal spores were recovered from all air samples. The number of colonies and the genera were similar for both inside and outside air. Microfungal filaments and sporulating structures were recovered from most of the pipe inner surface biofilm and dead end sediment samples, but were sparser in the biofilm than in the sediment samples. No recognisable, vegetative filamentous fungi were found in the slowly developing biofilm on coupons. This study indicates that airborne spores are an important potential source of microfungi found in water storage reservoirs. It has also demonstrated conclusively that filamentous microfungi grow and sporulate on water pipe inner surfaces and in soft sediments within the water distribution system

    Molecular mechanism of decision-making in glycosaminoglycan biosynthesis

    Get PDF
    Two major glycosaminoglycan types, heparan sulfate (HS) and chondroitin sulfate (CS), control many aspects of development and physiology in a type-specific manner. HS and CS are attached to core proteins via a common linker tetrasaccharide, but differ in their polymer backbones. How core proteins are specifically modified with HS or CS has been an enduring mystery. By reconstituting glycosaminoglycan biosynthesis in vitro, we establish that the CS-initiating N-acetylgalactosaminyltransferase CSGALNACT2 modifies all glycopeptide substrates equally, whereas the HS-initiating N-acetylglucosaminyltransferase EXTL3 is selective. Structure-function analysis reveals that acidic residues in the glycopeptide substrate and a basic exosite in EXTL3 are critical for specifying HS biosynthesis. Linker phosphorylation by the xylose kinase FAM20B accelerates linker synthesis and initiation of both HS and CS, but has no effect on the subsequent polymerisation of the backbone. Our results demonstrate that modification with CS occurs by default and must be overridden by EXTL3 to produce HS
    corecore