34 research outputs found
Coligation of the hepatitis C virus receptor CD81 with CD28 primes naive T lymphocytes to acquire type 2 effector function
Costimuli provide supplementary signals required by naive T cells to become fully activated upon Ag encounter. Tetraspanins are a large family of transmembrane proteins that can costimulate T cells when engaged in vitro. In this study, we describe for the first time that coligation of the tetraspanins CD81, CD82, or CD9 with the costimulatory molecule CD28 in vitro leads to proliferation of naive T cells. When activated through this pathway, both CD4+ and CD8+ naive T cells differentiate into type 2 effector cells, which produce IL-4, IL-5, IL-13, and IL-10, together with IL-2 and TNF-alpha, but little to no IFN-gamma. These effector cells descend from precursors that display early and strong production of IL-4, STAT6 phosphorylation, and up-regulation of the transcription factor GATA-3, suggesting a direct skewing toward Th2 differentiation without a Th0 intermediate. The hepatitis C virus envelope protein E2 is the only ligand known for CD81. Therefore, we propose that this new type of Ag-independent T cell activation may occur in hepatitis C virus-infected individuals, contributing to liver inflammation, impaired type 1 immune responses, and recurrent flares of type 2 immunity associated with chronic infection
Development of ISB 1442, a CD38 and CD47 bispecific biparatopic antibody innate cell modulator for the treatment of multiple myeloma
Antibody engineering can tailor the design and activities of therapeutic antibodies for better efficiency or other advantageous clinical properties. Here we report the development of ISB 1442, a fully human bispecific antibody designed to re-establish synthetic immunity in CD38+ hematological malignancies. ISB 1442 consists of two anti-CD38 arms targeting two distinct epitopes that preferentially drive binding to tumor cells and enable avidity-induced blocking of proximal CD47 receptors on the same cell while preventing on-target off-tumor binding on healthy cells. The Fc portion of ISB 1442 is engineered to enhance complement dependent cytotoxicity, antibody dependent cell cytotoxicity and antibody dependent cell phagocytosis. ISB 1442 thus represents a CD47-BsAb combining biparatopic targeting of a tumor associated antigen with engineered enhancement of antibody effector function to overcome potential resistance mechanisms that hamper treatment of myeloma with monospecific anti-CD38 antibodies. ISB 1442 is currently in a Phase I clinical trial in relapsed refractory multiple myeloma
IL-7 Promotes CD95-Induced Apoptosis in B Cells via the IFN-Îł/STAT1 Pathway
Interleukin-7 (IL-7) concentrations are increased in the blood of CD4+ T cell depleted individuals, including HIV-1 infected patients. High IL-7 levels might stimulate T cell activation and, as we have shown earlier, IL-7 can prime resting T cell to CD95 induced apoptosis as well. HIV-1 infection leads to B cell abnormalities including increased apoptosis via the CD95 (Fas) death receptor pathway and loss of memory B cells. Peripheral B cells are not sensitive for IL-7, due to the lack of IL-7Ra expression on their surface; however, here we demonstrate that high IL-7 concentration can prime resting B cells to CD95-mediated apoptosis via an indirect mechanism. T cells cultured with IL-7 induced high CD95 expression on resting B cells together with an increased sensitivity to CD95 mediated apoptosis. As the mediator molecule responsible for B cell priming to CD95 mediated apoptosis we identified the cytokine IFN-Îł that T cells secreted in high amounts in response to IL-7. These results suggest that the lymphopenia induced cytokine IL-7 can contribute to the increased B cell apoptosis observed in HIV-1 infected individuals
Dissecting in Vitro the Activation of Human Immune Response Induced by Shigella sonnei GMMA
Generalized Modules for Membrane Antigens (GMMA) are outer membrane exosomes purified from Gram-negative bacteria genetically mutated to increase blebbing and reduce risk of reactogenicity. This is commonly achieved through modification of the lipid A portion of lipopolysaccharide. GMMA faithfully resemble the bacterial outer membrane surface, and therefore represent a powerful and flexible platform for vaccine development. Although GMMA-based vaccines have been demonstrated to induce a strong and functional antibody response in animals and humans maintaining an acceptable reactogenicity profile, the overall impact on immune cells and their mode of action are still poorly understood. To characterize the GMMA-induced immune response, we stimulated human peripheral blood mononuclear cells (hPBMCs) with GMMA from Shigella sonnei. We studied GMMA both with wild-type hexa-acylated lipid A and with the corresponding less reactogenic penta-acylated form. Using multicolor flow cytometry, we assessed the activation of immune cell subsets and we profiled intracellular cytokine production after GMMA stimulation. Moreover, we measured the secretion of thirty cytokines/chemokines in the cell culture supernatants. Our data indicated activation of monocytes, dendritic, NK, B, and γΎ T cells. Comparison of the cytokine responses showed that, although the two GMMA have qualitatively similar profiles, GMMA with modified penta-acylated lipid A induced a lower production of pro-inflammatory cytokines/chemokines compared to GMMA with wild-type lipid A. Intracellular cytokine staining indicated monocytes and dendritic cells as the main source of the cytokines produced. Overall, these data provide new insights into the activation of key immune cells potentially targeted by GMMA-based vaccines
Functional specialization of human circulating CD16 and CD1c myeloid dendritic-cell subsets
Human blood contains 2 populations of dendritic cells (DCs): plasmacytoid and myeloid (mDC). mDCs are subdivided into 3 subsets using the surface markers CD16, CD1c, and BDCA-3. Their role as pathogen sentinels and adjuvant targets was tested by phenotypic and functional analysis. We show that mDC subsets are immature and express mRNA for most toll-like receptors (TLRs), except for TLR3 in CD16-mDCs. The most represented subsets, CD16- and CD1c-mDCs, are similarly responsive to all TLR agonists. Among 31 cytokines tested, both subsets produce CXCL8 (IL-8)/tumor necrosis factor-α (TNF-α)/IL-6/CCL3 (MIP-1α)/CCL4 (MIP-1ÎČ)/IL-1ÎČ. CXCL8 (IL-8) is the predominant cytokine produced by CD1c-mDCs on TLR engagement, whereas all other cytokines, particularly TNF-α, are secreted in 10-fold to 100-fold higher amounts by CD16-mDCs. CD16-mDCs cocultured with human umbilical vein endothelial cells induce a significantly higher production of CXCL10 (IP-10), granulocyte- macrophage colony-stimulating factor, and granulocyte colony-stimulating factor than CD1c-mDCs. In addition, interleukin-3 and type I interferons are stimuli specifically for DC maturation rather than cytokine secretion, whereas TNF-α is almost ineffective in inducing either function, suggesting a mechanism of T-cell-DC crosstalk and of rapid induction of antigen-presenting cell function during viral infection rather than inflammation. In conclusion, CD16-mDCs show strong proinflammatory activity, whereas CD1c-mDCs appear to be mainly inducers of chemotaxis. © 2007 by The American Society of Hematology
Ex Vivo Analysis of Human Memory B Lymphocytes Specific for A and B Influenza Hemagglutinin by Polychromatic Flow-Cytometry
Understanding the impact that human memory B-cells (MBC), primed by previous infections or vaccination, exert on neutralizing antibody responses against drifted influenza hemagglutinin (HA) is key to design best protective vaccines. A major obstacle to these studies is the lack of practical tools to analyze HA-specific MBCs in human PBMCs ex vivo. We report here an efficient method to identify MBCs carrying HA-specific BCR in frozen PBMC samples. By using fluorochrome-tagged recombinant HA baits, and vaccine antigens from mismatched influenza strains to block BCR-independent binding, we developed a protocol suitable for quantitative, functional and molecular analysis of single MBCs specific for HA from up to two different influenza strains in the same tube. This approach will permit to identify the naive and MBC precursors of plasmablasts and novel MBCs appearing in the blood following infection or vaccination, thus clarifying the actual contribution of pre-existing MBCs in antibody responses against novel influenza viruses. Finally, this protocol can allow applying high throughput deep sequencing to analyze changes in the repertoire of HA<sup>+</sup> B-cells in longitudinal samples from large cohorts of vaccinees and infected subjects with the ultimate goal of understanding the in vivo B-cell dynamics driving the evolution of broadly cross-protective antibody responses. 2013 Bardelli et a
Recommended from our members
Vaccine adjuvant MF59 promotes the intranodal differentiation of antigen-loaded and activated monocyte-derived dendritic cells
MF59 is an oil-in-water emulsion adjuvant approved for human influenza vaccination in European Union. The mode of action of MF59 is not fully elucidated yet, but results from several years of investigation indicate that MF59 establishes an immunocompetent environment at injection site which promotes recruitment of immune cells, including antigen presenting cells (APCs), that are facilitated to engulf antigen and transport it to draining lymph node (dLN) where the antigen is accumulated. In vitro studies showed that MF59 promotes the differentiation of monocytes to dendritic cells (Mo-DCs). Since after immunization with MF59, monocytes are rapidly recruited both at the injection site and in dLN and appear to have a morphological change toward a DC-like phenotype, we asked whether MF59 could play a role in inducing differentiation of Mo-DC in vivo. To address this question we immunized mice with the auto-fluorescent protein Phycoerythrin (PE) as model antigen, in presence or absence of MF59. We measured the APC phenotype and their antigen uptake within dLNs, the antigen distribution within the dLN compartments and the humoral response to PE. In addition, using Ovalbumin as model antigen, we measured the capacity of dLN APCs to induce antigen-specific CD4 T cell proliferation. Here, we show, for the first time, that MF59 promotes differentiation of Mo-DCs within dLNs from intranodal recruited monocytes and we suggest that this differentiation could take place in the medullary compartment of the LN. In addition we show that the Mo-DC subset represents the major source of antigen-loaded and activated APCs within the dLN when immunizing with MF59. Interestingly, this finding correlates with the enhanced triggering of antigen-specific CD4 T cell response induced by LN APCs. This study therefore demonstrates that MF59 is able to promote an immunocompetent environment also directly within the dLN, offering a novel insight on the mechanism of action of vaccine adjuvants based on emulsions
Vaccination with a FAT1-derived B cell epitope combined with tumor-specific B and T cell epitopes elicits additive protection in cancer mouse models
Human FAT1 is overexpressed on the surface of most colorectal cancers (CRCs) and in particular a 25 amino acid sequence (D8) present in one of the 34 cadherin extracellular repeats carries the epitope recognized by mAb198.3, a monoclonal antibody which partially protects mice from the challenge with human CRC cell lines in xenograft mouse models. Here we present data in immune competent mice demonstrating the potential of the D8-FAT1 epitope as CRC cancer vaccine. We first demonstrated that the mouse homolog of D8-FAT1 (mD8-FAT1) is also expressed on the surface of CT26 and B16F10 murine cell lines. We then engineered bacterial outer membranes vesicles (OMVs) with mD8-FAT1 and we showed that immunization of BALB/c and C57bl6 mice with engineered OMVs elicited anti-mD8-FAT1 antibodies and partially protected mice from the challenge against CT26 and EGFRvIII-B16F10 cell lines, respectively. We also show that when combined with OMVs decorated with the EGFRvIII B cell epitope or with OMVs carrying five tumor-specific CD4+ T cells neoepitopes, mD8-FAT1 OMVs conferred robust protection against tumor challenge in C57bl6 and BALB/c mice, respectively. Considering that FAT1 is overexpressed in both KRAS+ and KRASâ CRCs, these data support the development of anti-CRC cancer vaccines in which the D8-FAT1 epitope is used in combination with other CRC-specific antigens, including mutation-derived neoepitopes