41 research outputs found

    A few-electron quadruple quantum dot in a closed loop

    Full text link
    We report the realization of a quadruple quantum dot device in a square-like configuration where a single electron can be transferred on a closed path free of other electrons. By studying the stability diagrams of this system, we demonstrate that we are able to reach the few-electron regime and to control the electronic population of each quantum dot with gate voltages. This allows us to control the transfer of a single electron on a closed path inside the quadruple dot system. This work opens the route towards electron spin manipulation using spin-orbit interaction by moving an electron on complex paths free of electron

    Ergodic vs diffusive decoherence in mesoscopic devices

    Full text link
    We report on the measurement of phase coherence length in a high mobility two-dimensional electron gas patterned in two different geometries, a wire and a ring. The phase coherence length is extracted both from the weak localization correction in long wires and from the amplitude of the Aharonov-Bohm oscillations in a single ring, in a low temperature regime when decoherence is dominated by electronic interactions. We show that these two measurements lead to different phase coherence lengths, namely LΦwireT1/3L_{\Phi}^\mathrm{wire}\propto T^{-1/3} and LΦringT1/2L_{\Phi}^\mathrm{ring}\propto T^{-1/2}. This difference reflects the fact that the electrons winding around the ring necessarily explore the whole sample (ergodic trajectories), while in a long wire the electrons lose their phase coherence before reaching the edges of the sample (diffusive regime).Comment: LaTeX, 5 pages, 4 pdf figures ; v2: revised versio

    Quantum Coherence at Low Temperatures in Mesoscopic Systems: Effect of Disorder

    Full text link
    We study the disorder dependence of the phase coherence time of quasi one-dimensional wires and two-dimensional (2D) Hall bars fabricated from a high mobility GaAs/AlGaAs heterostructure. Using an original ion implantation technique, we can tune the intrinsic disorder felt by the 2D electron gas and continuously vary the system from the semi-ballistic regime to the localized one. In the diffusive regime, the phase coherence time follows a power law as a function of diffusion coefficient as expected in the Fermi liquid theory, without any sign of low temperature saturation. Surprisingly, in the semi-ballistic regime, it becomes independent of the diffusion coefficient. In the strongly localized regime we find a diverging phase coherence time with decreasing temperature, however, with a smaller exponent compared to the weakly localized regime.Comment: 21 pages, 30 figure

    Magnetic dephasing in mesoscopic spin glasses

    Get PDF
    We have measured Universal Conductance Fluctuations in the metallic spin glass Ag:Mn as a function of temperature and magnetic field. From this measurement, we can access the phase coherence time of the electrons in the spin glass. We show that this phase coherence time increases with both the inverse of the temperature and the magnetic field. From this we deduce that decoherence mechanisms are still active even deep in the spin glass phase

    On the link between mechanics and thermal properties: mechanothermics

    Full text link
    We report on the theoretical derivation of macroscopic thermal properties (specific heat, thermal conductivity) of an electrically insulating rod connected to two reservoirs, from the linear superposition of its mechanical mode Brownian motions. The calculation is performed for a weak thermal gradient, in the classical limit (high temperature). The development is kept basic as far as geometry and experimental conditions are concerned, enabling an almost fully analytic treatment. In the modeling, each of the modes is subject to a specific Langevin force, which enables to produce the required temperature profile along the rod. The theory is predictive: the temperature gradient (and therefore energy transport) is linked to motion amplitude cross-correlations between nearby mechanical modes. This arises because energy transport is actually mediated by mixing between the modal waves, and not by the modes themselves. This result can be tested on experiments, and shall extend the concepts underlying equipartition and fluctuation-dissipation theorems. The theory links intimately the macroscopic size of the clamping region where the mixing occurs to the microscopic lengthscale of the problem at hand: the phonon mean-free-path. We believe that our work should impact the domain of thermal transport in nanostructures, with future developments of the theory toward the quantum regime

    Qubits de spin (de la manipulation et déplacement d'un spin électronique unique à son utilisation comme détecteur ultra sensible)

    Get PDF
    Cette thèse décrit une série de travaux réalisés dans le contexte des qubits de spins, allant de l'utilisation de ces qubits pour stocker de l'information à leur utilisation comme détecteurs ultra-sensibles. Nous utilisons des hétérostructures semi-conductrices d'arséniure de gallium dans lesquelles un électron unique peut être isolé au sein d'un piège électrostatique, une boîte quantique. Le spin de cet électron peut être utilisé pour encoder de l'information, et la boîte quantique contenant ce spin unique est alors vue comme un qubit (quantum bit). Au cours de cette thèse nous démontrons la réalisation expérimentale du transport d'un électron unique le long d'un circuit fermé au sein d'un système composé de quatre boîtes quantiques couplées. En considérant l'interaction spin-orbite, cette expérience ouvre la voie vers des manipulations cohérentes de spins utilisant des effets topologiques. Dans le contexte de l'ordinateur quantique et des qubits de spins, nous étudions les portes logiques à deux qubits. Dans le cadre de deux boîtes quantiques couplées par une barrière tunnel, nous démontrons qu'en contrôlant localement le champ magnétique, la porte logique à deux qubits évoluent de la porte SWAP à la porte C-phase. Nous démontrons ainsi la faisabilité d'une porte C-phase. Finalement nous montrons l'utilisation d'un qubit de spin comme un détecteur de charge ultrasensible. Un singlet-triplet qubit est un système quantique qui peut être réglé de manière à être extrêmement sensible à l'environnement électrostatique. Nous démontrons la faisabilité d'un tel détecteur, et nous montrons qu'il peut être utilisé pour détecter un électron unique.In this thesis we described a series of experimental works, which have been realized in the context of spin qubits, going from their use as information carriers to their use as very sensitive detectors. We use AlGaAs semiconducting heterostructures in which a single electron can be isolated in an electrostatic trap, the so-called quantum dot. The electron spin can be used in order to encode information, and the quantum dot containing this electron can therefore be seen as a qubit (quantum bit). During this thesis we demonstrate the first experimental realization of a single electron transport along a closed path inside a system composed of four coupled quantum dots. By considering spin-orbit interaction, this experiment opens the way toward coherent topological spin manipulations. In the context of quantum computing and spin qubits, we study the two-qubit gates. By considering two tunnel coupled quantum dots, we demonstrate by controlling the local Zeeman splitting that the natural two-qubit gate for spin qubits evolves from the SWAP gate to the C-phase gate. This work demonstrates the feasibility of the C-phase gate. Finally we use spin qubits as very sensitive detectors. A singlet-triplet qubit is a quantum system which can be tuned in order to be very sensistive to the electrostatic environment. Here we report the use of such a qubit to detect a single electron transported next to the detector.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Experimental Test of the Numerical Renormalization Group Theory for Inelastic Scattering from Magnetic Impurities

    Full text link
    We present measurements of the phase coherence time \tauphi in quasi one-dimensional Au/Fe Kondo wires and compare the temperature dependence of \tauphi with a recent theory of inelastic scattering from magnetic impurities (Phys. Rev. Lett. 93, 107204 (2004)). A very good agreement is obtained for temperatures down to 0.2 TKT_K. Below the Kondo temperature TKT_K, the inverse of the phase coherence time varies linearly with temperature over almost one decade in temperature.Comment: 5 pages, 3 figure

    Efficient Radio Frequency filters for space constrained cryogenic set-ups

    Full text link
    Noise filtering is an essential part for measurement of quantum phenomena at extremely low temperatures. Here, we present the design of a filter which can be installed in space constrained cryogenic environment containing a large number of signal carrying lines. Our filters have a -3db point of 65kHz and its performance at GHz frequencies are comparable to the best available RF filters.Comment: 9 pages, 4 figures, The capacitor reference in the first version was wrong and has been changed to the right on

    Low temperature dephasing in irradiated metallic wires

    Full text link
    We present phase coherence time measurements in quasi-one-dimensional Ag wires implanted with Ag+^{+} ions with an energy of 100keV100 keV. The measurements have been carried out in the temperature range from 100mK100 mK up to 10K10 K; this has to be compared with the Kondo temperature of iron in silver, i.e. TKAg/Fe4KT_{K}^{Ag/Fe} \approx 4 K, used in recent experiments on dephasing in Kondo systems\cite{mallet_prl_06,birge_prl_06}. We show that the phase coherence time is not affected by the implantation procedure, clearly proving that ion implantation process by itself \emph{does not lead to any extra dephasing} at low temperature.Comment: 4 pages, 4figure

    Fast end efficient single electron transfer between distant quantum dots

    No full text
    International audienceLateral quantum dots are a promising system for quantum information processing devices. The required basic manipulations of a single electron spin have indeed been demonstrated. However, a stringent requirement is the ability to transfer quantum information from place to place within one sample. In this work, we explore and demonstrate the possibility to transfer a single electron between two distant quantum dots in a fast and reliable manner
    corecore