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Introduction

In the early 1950s, the transistor effect was discovered by Brattain, Bardeen, and Shock-
ley. This invention led to the amazing growth of the micro-electronic industry based on
the race for components miniaturisation. To give an order of magnitude, today’s micro-
processors hold billions of transistors whose typical size range 50nm. But this industry
will have to face new issues. First the commuting energy (the energy needed to change
the state of a transistor) scales with the transistor size. At a certain point, this energy
will be dominated by the thermal energy, and the device stability will not be ensured any
more. In addition, when the transistor size becomes the same order of magnitude of the
electron wavelength, the physics is governed by the quantum mechanics laws. The interest
of physicists combined with the necessity for the micro-electronic industry to overcome
theses issues gave rises to a new field of research called quantum nanoelectronics. One of
the "hot topic" of this field concerns electronics with a single electron.

The first requirement toward electronics with a single electron relies on the ability to
isolate this electron. For two or three decades, a particular attention has been given to
quantum dots. This is a region in space where the motion of the electrons is confined all
along the three dimensions. In this thesis we will focus on laterally confined quantum
dots made in AlGaAs heterostructure. Such a semiconducting structure contains a two-
dimensional electron gas (2DEG) which allows for electron confinement in a plane. Inside
this plane, the electrons are confined by an electrostatic potential which can be controlled
by means of macroscopic voltages applied on metallic gates deposited at the surface of
the sample. In the 1990s the ability to isolate a single electron in lateral quantum dots
has been demonstrated [1], and gave rise to prolific studies. Indeed, since this electron is
isolated, we can therefore imagine to control its degrees of freedom, as its charge or its
magnetic momentum (spin).

When faced with these new objects, physicists began to think about the possibility to use
this electron (meaning its degrees of freedom) in order to encode information, building
what is commonly called a qubit (quantum bit). A qubit is the quantum equivalent of
the classical bit. It is a two-levels system, but contrary to its classical counterpart, a
qubit can exist in a superposition of states. Such a property is at the center of a quan-
tum computer. This quantum machine could take advantage of the quantum parallelism
in order to solve complex problems. For instance one of the most cited example is the
decomposition of an input number into prime factors . Considering a classical computer,
this process is exponential in the number of digits of the input number, and today any
public-key cryptographic system relies on this exponential behaviour : to go from the
public key to the private one, one needs to factorise it, and for a key of a few hundred of
bits, no one is supposed to be able to perform it in a short time. In the case of a quantum
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computer, an algorithm (Shor’s algorithm) using the features of this machine should be
able to break this limitation, because of the polynomial dependence (in the number of
digit of the input) of the prime factor decomposition. The resolution of mathematical
problems should not be the only capacity of a quantum computer. Indeed when Feynman
first introduced the idea in 1982, his idea relied more on the ability of such a machine to
simulate quantum systems [2].

In order to experimentally realize such a computer, a certain amount of qubits needs to
be entangled. In the context of semiconductor quantum dots, several ways have been
proposed in order to do so, but one of the most attractive solution relies in the transport
of a single electron from a quantum dot to another one. Recently fast and efficient single
electron transports have been obtained by assisting the transport through an electrostat-
ically defined 1D-channel with surface acoustic waves in AlGaAs heterostructures [3, 4].
Nevertheless, such a technique is restricted to displacements along a straight line. To
perform more complex displacements, engineering the path of the electron with series of
quantum dots is a promising alternative. In this context, we developed a system of a
quadruple quantum dot where a single electron can be transported from one quantum
dot to another one. In addition interesting topological features arise from the transport
of an electron along a closed path. Indeed it has been theoretically predicted that topo-
logical spin manipulations could be obtained if an electron is transported adiabatically
along a closed path [5, 6], and the system that we designed opens the way toward such
manipulations.

Like a classical computer, a quantum computer needs some elementary operations enter-
ing in algorithm. In semiconductor quantum dots, all theses operations (known as gates)
required for quantum computation with single spins, like the single-shot readout [7] or
the single-qubit rotations [8], have been demonstrated recently. In addition the two-qubit
gate vV SW AP has also been realized experimentally [9]. Although this two-qubit gate
combined with the single qubit rotations forms a universal set of gates, meaning that
any quantum operations could be implemented via these gates, they are not the natural
building block for quantum algorithms. For instance the two-qubit gate entering in the
Shor’s algorithm are the controlled gates (C-NOT or C-phase), and the implementation
of a C-not gate with a combination of the v SW AP and single qubit rotations requires 5
steps. Considering two tunnel coupled quantum dots, each occupied with a single electron
spin, it has been demonstrated theoretically [10] that a difference in the local Zeeman
splitting AB, between the two quantum dots can be exploited to realize a controlled
phase gate (C-phase). Especially the natural two-qubit gate for single spin qubits evolves
from the SWAP gate at AB, = 0 to the C-phase gate at larger AB,. Here we propose
to study experimentally the effect of a finite gradient AB, on the SWAP operation. By
using dynamical nuclear polarization [11], we are able to generate a gradient AB, up to
20mT. This study allows us to study experimentally the feasibility of a C-phase gate with
single spin qubits, and to give a value of a controlled m—phase gate duration.

Finally instead of using a spin qubit as an information carrier, we tried to use it as a very
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sensitive electrostatic detector. A Singlet-Triplet qubit is a quantum system where the
two quantum levels can be tuned on fast timescales from a charge-like to spin-like qubit.
Whereas the qubit is highly sensitive to the electrostatic environment and characterized
by timescales as fast as few hundreds of picoseconds in the charge regime, the informa-
tion stored in the qubit in the spin regime can be preserved for a time longer than few
hundreds of microseconds [12|. This gives seven orders of magnitude between the two
important quantities of a quantum detector: time of interaction and time to keep the
information. It allows for interacting strongly for a very short time with a single electron,
storing the resulting effect on the population of the two-level system for a time sufficiently
long [13] and reading-out single shot the state of the qubit with fast charge detection [14].
Therefore we will study the use of such a qubit in order to detect the passage of electrons
transported in edge-states next to the qubit detector. We will see that this device should
be able to detect the passage of a single electron next to the quantum dot, opening the
way toward single electron detector for quantum optics experiments with electrons.
Before entering in the details of these results, we will introduce general concepts related
to quantum dot systems. We tried to give all the "ingredients" needed to understand
the further discussions. Finally we will conclude about the perspectives following these
results.
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CHAPTER 1

(General concepts

Résumé

Dans ce chapitre nous présentons quelques concepts généraux relatifs aux boites quan-
tiques latérales basées sur des hétérostructures d’arséniure de gallium. Ces hétérostruc-
tures semiconductrices présentent la particularité de posséder un gaz d’électrons bidi-
mensionnel a environ 100nm de la surface. Un puits de potentiel électrostatique peut étre
généré au sein de ce gaz a ’aide de tensions appliquées a des grilles métalliques disposées
a la surface de ’échantillon. Des électrons du gaz se retrouvent piégés dans ce puit de
potentiel, leur mouvement étant alors confiné dans les trois dimensions. Un tel dispositif
est communément appelé une boite quantique. Nous profitons de ce chapitre pour décrire
les propriétés générales de tels objets.

Dans un premier temps, nous étudierons les propriétés lices a la charge des électrons. Par
un développement classique (électrostatique) on peut démontrer que les états de charge
d’une boite quantique sont une collection de potentiels électrochimiques, séparés en éner-
gie par ’énergie de charge. Cette énergie est relative & un concept purement classique et
correspond a I’énergie qu’il faut fournir pour ajouter un électron a la boite quantique. Par
la suite nous introduirons les notions quantiques de couplage tunnel et d’énergie orbitale.
Par ailleurs nous accorderons une grande importance sur la mesure expérimentale de ces
états de charge, en étudiant les mesures de transport électronique ainsi que les mesures
de détection de charge.

Aprés avoir abordé le degré de liberté de charge de 1’électron, nous nous intéresserons
plus en détail a son spin. Nous étudierons les états de spin a 1 et 2 électrons. Dans les
systémes de boites quantiques latérales, la mesure directe d’un spin électronique étant
difficile, la notion de conversion spin-charge, qui permet la mesure d’un spin électronique
unique en mesurant son état de charge, sera introduite. Nous profiterons de cette partie
pour détailler un peu plus en détail les notions de relaxation et de décohérence relatives
a tout état quantique.

Pour finir, afin de rappeler que la boite quantique n’est pas un objet isolé du reste du
monde, nous introduirons deux interactions qui relient les électrons piégés dans des boites
quantiques a leur environnement. L’interaction hyperfine entre les spins ¢électroniques et
les spins nucléaires ainsi que le couplage spin-orbite reliant le degré de liberté de charge
a celui de spin seront détaillés.
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Introduction

For the last few decades, the technologies related to semiconductors gave physicists access
to new kind of systems, that have been intensely used to study the theoretical predictions
of modern physics. For instance high electron mobility transistors (HEMTs) embedded in
a two dimensional electron gas (2DEG), and the use of such devices led to the discovery
of the quantum hall effect by von Klitzing and co-workers in 1980 [1].

In addition such semiconducting devices can be used to make a lateral quantum dot. It
consists of isolating few electrons, and even a single one, in an electrostatic trap. Such
a system allows for studying the physic of a single electron, and its degrees of freedom,
like its charge or its spin. Physicists took this reasoning further by thinking about the
possibility to use a single electron spin to encode information, and to build what is called
a quantum bit (spin qubit) [2]. This qubit would be the elementary block of a quantum
computer, which should allow to solve mathematical problems like the factorization of
an integer into prime numbers or the travelling salesman problem, and to simulate a
quantum system |[3].

Before discussing about the manipulation of an electron spin in quantum dots, some
general concepts related to the physic of such devices will be presented. The way to
isolate a single electron in an electrostatic potential, the resulting charge and spin states
have to be introduced in order to go further in the understanding of these systems.
Nonetheless when a single electron spin is trapped in a quantum dot, it is not totally
isolated from the rest of the "world". Two main interactions (hyperfine and spin-orbit
interactions) will retain our attention and we will discuss about those at the end of this
chapter.

1.1 Laterally defined quantum dots

In quantum dot systems, the motion of an electron is confined along the three dimen-
sion. It can be seen as a small island of electrons, isolated from the other electrons (the
reservoir) through tunnel barriers. There are several ways to achieve it. Self-assembled
quantum dots or carbon nanotubes (CNT) can be used. In these cases, the confinement
is intrinsic to these objects. But if they effectively present the expected behaviour of a
quantum dot, they may not be tuned as desired. For instance, the tunnel barrier separat-
ing the CN'T quantum dot and the reservoirs is usually defined by the contact electrode
between the substrate and the CNT. As we will see in the following, these tunnel barriers
are crucial concerning the electron spin dynamic. For example, take the process of spin
relaxation, which allows for an excited spin state to return back in the ground state. This
process can be seen as a loss of information, which is not desired. And it is largely depen-
dent on the coupling between the quantum dot and its reservoir(see chapter 4). Indeed
the electron spin in the excited state can be exchanged with one from the reservoir in
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order to relax in the ground state.

In contrast to these not very tunable systems, a heterostructure containing a 2DEG (Fig-
ure 1.1 (a)) can be used. In this way the motion of the electron is first intrinsically
confined in a plane. To ensure the confinement in the others two dimensions, a trap-
ping potential can be generated thanks to voltages applied on metallic gates. If the gate
geometry has been designed cleverly, the tunability of such quantum dot is generally im-
portant, meaning that by changing the gate voltages, the quantum dot characteristics can
be tuned. For instance the tunnel rate between a lateral quantum dot and its reservoir
can be tuned from more than 1s7! to less than 1ns™!'. In addition, it allows to create
multiple quantum dot devices, where several quantum dots are coupled to each other
through tunnel barriers.

All the quantum dot devices measured in this thesis are fabricated from silicon(Si) doped
GaAs/AlGaAs heterostructures. These heterostructures are made of different semicon-
ducting layers stacked in a specific way. These layers are grown on top of each other
by molecular beam epitaxy (MBE). A specific sequence of stacking leads to a particular
band structure (Figure 1.1 (b)) which gives rise to the formation of a 2DEG. Indeed,
around 100nm below the surface, the conduction band goes below the Fermi energy,
which results in the confinement of the electrons in a plane, the 2DEG. The 2DEG is
usually separated about 20 nm from the AlGaAs donor region by an undoped spacer
layer. This separation allows for extremely high mobility of the electrons in the 2DEG,
because scattering with the Si donors is strongly reduced. At liquid helium temperature,
i.e 4.2 K, the typical electron mobility and electron density are 105 — 105cm2. V1 .s71
and 10" em ™2 respectively. The relatively low electron density results in a large Fermi
wavelength, A\p ~ 50nm, and a large screening length, which allows to locally deplete
the 2DEG with an electric field (orange part in figure 1.2). The Fermi wavelength gives
the relevant scale at which the potential landscape seen by the electrons will have to be
modelled in order to see quantum effects appear.

Electric fields can be generated by applying a negative voltage on the metal gates
electrodes deposited on the surface of the heterostructure (yellow parts in figure 1.2).
The Schottky barrier formed at the metal-semiconductor junction ensures that no charges
leak into the heterostructure. The coupling between the gate and the electron gas is then
purely capacitive. By designing a proper geometry of gates, a confinement potential can
be engineered, and consequently a small "island" of electrons (dark blue part in figure 1.2)
is isolated from the rest of the gas (light blue part in figure 1.2) by tunnel barriers. Ohmic
contacts enable to make electrical contact with the 2DEG and to measure the devices.
These contacts are made of an alloy of metallic components (Ni, Ge, Au) which can diffuse
from the surface to the 2DEG during an annealing process. In addition the gate geometry
can be made more complex in order to form several coupled quantum dots. Moreover
changing one of the gate voltages leads to a modification of the electrostatic energy of
the system. For instance making these voltages more negative tends to reduce the typical
size of the potential. Therefore it increases the electrostatic energy of the system and as
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Figure 1.1: GaAs/AlGaAs heterostructure and 2DEG (Two dimensional elec-
tron gas). (a) Scheme of the stack of semiconductor layers used for the heterostructure.
(b)Band structures of the heterostructure. 100nm below the surface, the conduction
band goes below the Fermi Energy, giving rise to the 2DEG.

a consequence the number of electrons populating it decreases. The control of the charge
degree of freedom of a quantum dot is therefore crucial in order to be able to let just a
single electron inside, and it implies to go through the understanding of the charge states
in quantum dot systems.

All along this chapter, the different physical concepts will be introduced by considering
only a single quantum dot. The case of multiple quantum dots will be introduced later,
and by using the same approach which will be develop in the following.

1.2 Charge states in a single quantum dot

From an experimental point of view, the only information that we can extract from a
GaAs/AlGaAs quantum dot is its charge state. In certain configurations, it allows to know
its spin state by using the spin-to-charge conversion technique [4]. The understanding
of the charge states is therefore of importance. As it will be detailed in the following,
the confinement of the electrons gives rise to a particular energy spectrum. Indeed the
Coulomb repulsion between the electrons implies that an energy has to be paid in order
to add an electron into the quantum dot. Due to this requirement the charge states of a
quantum dot become discrete and we generally deal with electrochemical potential states.
In addition the typical size of the trapping potential is of the same order of magnitude as
the Fermi wavelength of the electrons. It gives rise to quantum effects, like the concept
of single particle states, representing the notion of orbital states in an atom. Although
these quantum effects have to be taken into account to get a full picture of the quantum
dot physics |5], a simpler classical model (Constant Interaction (CI) model) is generally
sufficient to describe its behaviour.
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Figure 1.2: Schematic view of a quantum dot device. Negative voltages applied to
the metal gates (yellow) lead to depleted regions (orange). With a proper gate geometry,
a confinement potential can be engineered. A small island of electron (dark blue) is then
isolated from the rest of the gas (light blue) via tunnel barriers. Ohmic contacts enable
to make electrical contact with the 2DEG.

1.2.1 Constant Interaction model

The use of a "simple" electrostatic model to describe a system made of quantum dots turns
out to be quite powerful especially in the case of several quantum dots interacting together
(see chapter 3). In addition it allows for the introduction of important concepts like the
charging energy or the electrochemical potential. Here we consider a single quantum
dot. Its electrostatic energy is controlled thanks to a gate voltage (V,1). Moreover it is
coupled to a Fermi sea (a reservoir) (figure 1.3 (a)). In the CI model, this coupling is
purely capacitive (classical physics). In reality a tunnel barrier couples the reservoir with
the quantum dot, allowing an exchange of electrons between them. We notice that we
chose to study the easiest system : a single quantum dot coupled to a single reservoir.
But as we will see, in order to probe this quantum dot by transport measurement, we
need to couple two reservoirs to the quantum dot. It doesn’t change anything to the
following discussion, and this is why we chose in a first time to simplify as much as we
can the system.
The constant interaction (CI) model (Figure 1.3 (b)) relies on two major assumptions|6]:

e The Coulomb interaction between the electrons in the quantum dot and the ones
in the reservoirs and the gates are modelled by a single capacitance C. This
capacitance is therefore the sum C; = C; + Cg where Cy = > . Cy; is the sum of
the electrostatic capacitances between the quantum dot and each gates i. Ck is the
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Figure 1.3: Single quantum dot. (a)Schematic view of a single quantum dot. Tt is
coupled to a Fermi sea at energy Er. Its energy can be controlled thanks to a gate voltage
Vg1, and therefore it can exchange electrons with the reservoir. Moreover a charge meter
can be capacitively coupled to the quantum dot. (b) CI model of a single quantum dot
device.

capacitance between the quantum dot and the rest of the gas (the reservoir).

e The discrete energy spectrum is independent on the number of the electrons present
in the quantum dot.

The electrostatic energy of the quantum dot can be written as

1
U= _501‘/12 (1.1)

where C} = Cj + Cg (we intentionally omitted the capacitance of all the gates by
considering only one of them) is the total capacitance coupled to the quantum dot, and
V) is the electrostatic potential of the quantum dot. The number of charges N; on the
quantum dot can be written as the sum of the charges on all the capacitors connected to:

—Nie =Cyu(Vi = V1) + Cr(Vi — Vi)

1.2
CiVi = —Nie+ CyVy + CrVi (1-2)
By substituting V; (Equation 1.2) into the equation 1.1, we get :
—N CrVg + C, V,]?
U(N V) = =20e+ CrVie + Con Vol (13)

20,
For N fixed, the electrostatic energy U is a parabola with respect to the gate voltage
Vy1 (Figure 1.4 ). Starting from the very negative gave voltage region (V1 — —o0),
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Figure 1.4: Electrostatic energy of a single quantum dot with respect to the gate
voltage V,; for different values of the number of charges in the quantum dot V;

the value of N; minimizing U is 0, and therefore the quantum dot is empty. Now by
increasing V1, U(Ny = 0,V,1) can be made equal to U(N; = 1,V;). The two "charge
states" N; = 0 and N; = 1 are then degenerate. At this value of Vj, an electron
is exchanged between the reservoir and the quantum dot through the tunnel barrier
separating them. For larger V;;, the charge state N; = 1 becomes the ground state until
UN, =1,Vp) = U(Ny = 2,V1), etc... It defines, in the gate voltage parameter space,
regions where the number of electrons in the quantum dot is fixed (in figure 1.4 these
regions are separated by dashed lines), that is to say, the charge ground state for each
value of V.

To describe these charge states, the use of the electrochemical potential is of direct
relevance. The electrochemical potential (N1,Vy;) is defined as the energy needed to
add the NI electron to the quantum dot and it comes as (we assume Vp = 0) :

p(N1, V1) = U(Ny) = U(Ny — 1)

1 Cp
= (Ny — §)EC - Fglevgl

(1.4)

We introduced here Eo = g—j, the so-called charging energy. The number of electrons
populating the quantum dot for a fixed value of gate voltage V;; corresponds to the largest
Ny leaving pu(N7) < 0. In addition the electrochemical potential changes linearly with
respect to the gate voltage V,; with a proportional factor o = CC—"; This factor called
the a-factor or gate lever arm is related to the conversion of the gate voltage into the
energy (V <— aeV). Furthermore the addition energy Ap(NV;) can also be introduced.

It corresponds to the energy separating two charge states :
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Figure 1.5: Electrochemical potential of a single quantum dot.(a)By changing the
gate voltage Vj; the electrostatic energy of the system can be changed in order to set an
electrochemical potential state in resonance with the one of the reservoir set at Er. An
electron is then exchanged between the quantum dot and the reservoir. (b) When no
level is in resonance, the number of electrons in the quantum dot is fixed.

Ap(Ny) = pu(Ny +1) — p(Ny)
e e (1.5)
G
We remind that this model is a purely classical one, which does not take into account
any quantum effects. Consequently the origin of the addition energy is hence electro-
static, classical. As we will see afterwards, the quantum effects give rise to a slightly
different addition energy.
The electrostatic energy of the quantum dot, i.e its electronic population, can be con-
trolled by changing the gate voltage V. In particular one level of electrochemical poten-
tial can be set in resonance with the one of the reservoir. An electron is then exchanged
between the quantum dot and the reservoir via a tunnel barrier (Figure 1.5 (a)). The
number of electrons into the quantum dot is fluctuating between N and N — 1. If no
level is in resonance, the number of electrons is fixed, protected by the charging energy
(Figure 1.5 (b)). This is the so-called Coulomb blockade.
In conclusion the charge state spectrum of a single quantum dot is a collection of
electrochemical potential level separated by the charging energy F-. This energy depends



1.2. Charge states in a single quantum dot 9

linearly on the capacitance C) = Cy + Cg, and scales with é,

the quantum dot. A typical size of a quantum dot is 40nm giving a charging energy
Ec ~ 1meV. This energy is equivalent in the temperature scale to 10K. It fixes some
experimental constraints on the working temperature to avoid any thermal excitations,
and the techniques used to work at low temperature will be introduced in the next chapter.

where d is the size of

1.2.2 Quantum effects in quantum dot systems

Until now, only classical physics has been used to describe the charge state of a quantum
dot. Due to Coulomb repulsion and confinement, the charge states of a quantum dot
become discrete and separated by the charging energy E-. The confinement gives also rise
to particular quantum effects. The typical quantum dot size (the size of the electrostatic
potential, d ~ 40nm) is in the same order of magnitude than the Fermi wavelength of
the electron (Ap ~ 50nm). Then the electrons cannot be considered only as particles,
but their wave-like behaviour has to be taken into account. It gives rise to the concept of
single particle states, the equivalent of the orbitals in an atom. Consequently electrons
occupy orbital states describing their wave-like behaviour and due to Pauli principle, each
of these orbital state has to be filled with at maximum one electron (two if we take into
account the spin degree of freedom). Then the addition energy is now written as :

2
e

Au(Ny) = Ec+ Eny — En = rel + AFE (1.6)

where Fy is the topmost filled single particle state for an N electron quantum dot.

AF is called the orbital energy, and scales with d—12. Indeed the single particle states can

be considered as being the ones of an harmonic oscillator E,, = hw(n + %), where n € N.

The frequency w of this oscillator is related to the typical size of the potential by the
formula d = \/% (m being the electron mass), and therefore E,, mh_jz2~ For d ~ 40nm
it is roughly equal to ~ 500ueV. As it will be shown later, we take advantage of this
orbital energy to measure spin states in a double quantum dot system.

Another quantum effect already briefly mentioned is the tunnel effect. Indeed a quantum
dot can be seen as an island of electrons isolated from the rest of the 2DEG (reservoirs)
through tunnel barriers. The transmission of these barriers determines the rate at which
an electron occupying the quantum dot can be exchanged with one from the reservoir. In
the context of quantum information, if there is such exchange, the information encoded
into the spin (or the charge) of this electron will be obviously lost. Consequently we need
to be able to perform spin manipulations faster than this exchange process. This process
is obviously limited by the tunnel coupling between the quantum dot and the reservoir, a
thin (thick) barrier giving rise to fast (slow) relaxation. The purpose of this thesis being
the use of a quantum dot as a spin qubit, it involves sufficiently thick tunnel barriers.

On the other hand, as it will be explained in the fourth chapter, this process is also used
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in order to initialize the spin state of the system. Then a compromise has to be found
between a thick barrier which protects in a better way the spin information, and a thin
one, allowing faster initialization.

We will now introduce two ways to probe the charge state of quantum dot system :

e Transport measurements which consists of studying the current flowing through a
quantum dot

o QPC measurements by using a charge detector capacitively coupled to a quantum
dot

1.2.3 Transport measurements

One of the experimental methods to probe these charge states involves studying the
current through a quantum dot in response to a bias voltage excitation across it. We
consider a single quantum dot (dark blue in figure 1.6 (a)) coupled to two Fermi seas
(reservoirs) pinned at two different energies, resulting from the bias excitation. The gate
geometry of the sample will be described in details later (chapter 4). Here we just assume
the possibility to engineer a confinement potential coupled to two reservoirs. They are
called the source and the drain and —eVsp = s — pup, where pg (up) corresponds
to the electrochemical potential of the source (drain). Contrary to what we have seen
before, here in order to perform transport across the quantum dot, it is coupled to
two reservoirs. We assume that |eVsp| is relatively small (~ 100peV’) in comparison
with the energy scales of the system (the charging and orbital energies Ec, AFE). This
assumption ensures that the transport through the quantum dot is always made through
the charge ground state (linear transport). The electrostatic energy of the quantum dot
can be controlled by using the gate voltage Vj;, allowing to change the charge state of
the system. This charge state is probed by measuring the current passing through the
quantum dot as a response to the voltage bias excitation.

As it has been seen, the energy spectrum of a quantum dot is a collection of discrete
electrochemical potential states. Then two distinct cases are possible (Figure 1.6 (b)) :

e One level of the electrochemical potential, for instance pg0(N), is aligned to the
bias window. Then an electron can tunnel from the source to the drain through the
quantum dot by two sequential tunnelling processes. The experimental signature is
a non vanishing current across the quantum dot. In this situation, the number of
electrons on the quantum dot is not fixed. It fluctuates between N and N — 1.

e Now, starting from the previous situation, let us imagine that we change the gate
voltage V1 in order to set pigor(N) < pp and pgor(N + 1) > pg. In this case, no
state are aligned in the bias window, and no current can flow through the quantum
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Figure 1.6: Transport measurement of a single quantum dot.(a)SEM (scanning
electron microscopy) picture of the quantum dot device. The quantum dot (dark blue) is
coupled to two Fermi seas (reservoirs), the source and the drain, and a bias voltage Vsp
is applied between them. The current flowing through the quantum dot is collected and
amplified by an IV-converter (see chapter 2). (b)Top : if one level of chemical potential
is aligned into the bias window, electrons can flow from the source to drain by tunnelling
through the quantum dot. A current is then measured. Bottom : if no level is included
in this bias windows, the electron are Coulomb blockaded, and no current flows through
the device. (c) Experimental realization of a transport measurements. The bias voltage
has been set to Vsp = 100ueV, and a series of Coulomb peaks is clearly observed.
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dot (at least to the first order). This is the so-called Coulomb blockade, and the
number of electrons is fixed to N.

By studying the current across the quantum dot as a function of the gate voltage V1,
a collection of current peaks (Coulomb peaks), is obtained (Figure 1.6 (c)). Between two
peaks no current flows through the system, the number of electrons is well defined, and
the charge state corresponds to the electrochemical potential jig (V) with the greatest N
leaving pigor(N) < pp. On a Coulomb peak, one electrochemical potential of the quantum
dot is aligned in the bias windows. In this case, the number of electrons fluctuates between
N and N + 1, and the ground charge state of the system is not well defined, fluctuating
between figor(N) and figor (N + 1).
We can distinguish two main regimes of tunnelling between the quantum dot and its
reservoirs, the weak and strong tunnelling. In order to use a quantum dot as a qubit,
we want to preserve it from the environment, therefore the tunnel barrier between the
quantum dot and the reservoirs are generally used in the weak tunnelling regime. In this
case, the amplitude and the shape of these peaks depend on the parameters of the system,
such as the tunnel barriers or the temperature. For instance the amplitude depends on
the two tunnel barriers separating the quantum dot with the drain and the source. The
passage of a single electron is a sequence of two tunnel processes. So the current flowing
through the quantum dot is limited by the smallest tunnel rate. Moreover the shape of
the peaks depends on the electron temperature. A finite temperature tends to broaden
the Coulomb peaks due to the Fermi distribution of the electrons in the reservoir. But
this technique has however some limitations, as we will see below, and has not been used
intensively in this thesis.
Indeed the limitations of the transport measurement are due to its very nature : the signal
corresponds to a current flowing through the quantum dot system. For instance let us
consider the measurement of the spin relaxation of one electron spin in a single quantum
dot (we remind that the relaxation is a process leading to the decay of an excited state
into the ground state). The typical relaxation time in a single quantum dot is of the
range of T ~ 1ms |7]. We will detail later the principle of spin measurement in quantum
dot systems, and here we just assume that the electron is allowed to leave the quantum
dot if its spin state is the ground state. Therefore we see directly with this example that
the current generated by such a measurement is quite small (I ~ 0.1fA). In addition in
order to perform spin manipulations in quantum dots, we need to be able to reach the few
electron regime, where only one electron remains trapped in the quantum dot. And in
this regime, the tunnelling rate I is relatively small, or approximatively I' ~ 1051, As
we have briefly said, the current flowing through the quantum dot depends on the tunnel
barriers. With a tunnel rate equal to I' ~ 10*s™!, the expected current is Iy ~ 1fA (in
the linear regime, only one electron can flow trough the quantum dot). In comparison to
the noise in the output of the amplifier (~ 10fA/v/Hz, see chapter 2), it implies that the
bandwidth of the measurement chain should be lowered. For instance, to get a signal to
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noise ratio equal to 10, we need to reduce the bandwidth at 10~*Hz in order to observe
a signal equal to 1fA. In other words, although technically feasible, the use of such a
measurement technique to probe the charge state of a few electron quantum dot is not
really appropriate. For these limitations, we mainly employed the charge detection and
we will now describe this technique.

1.2.4 Charge detection

The commonly used technique to detect the last electron leaving the quantum dot relies on
the high sensitivity of QPCs (Quantum Point Contact) with regard to their electrostatic
environment [8]. A QPC is a short one dimensional channel for the electrons (Figure
1.7 (a)). This small channel can be engineered by using two gates, and by applying a
negative voltage VQQP © on it. When the width of this channel becomes comparable to the
Fermi wavelength of the electron, the latter have to flow through the laterally quantized
modes of the QPC potential. The QPC exhibits then plateaux of conductance, which
are an integer multiple of % These plateaux correspond to an integer number of open
conducting quantum channels through the QPC ( we notice that % = (12.9kQ)71). Since
the QPC conductance varies fast with respect to the gate voltage VgQP ¢ between these
plateaux, the QPC is therefore highly sensitive to the electrostatic environment, and in
particular to the number of charges present in the quantum dot. To be able to detect
these charges, we tune the VQQPC to set the QPC where the sensitivity is the highest,
generally between the last plateau and the "0" conductance (inset Figure 1.7 (b)). The
QPC is biased with a voltage around Vgpc ~ 500uV, and the current flowing through
it is collected and amplified by an IV-converter (Figure 1.7 (a)). The larger is the bias
voltage Vopc, the larger will be the signal. But the QPC back-action on the system has
to be taken into account. Indeed it has been demonstrated |9, 10] that the QPC noise can
influence the state of the quantum dot. Indeed the QPC can emit photons with energy
up to the bias voltage. Consequently Vopc has to be kept below the charging energy
Ec ~ 1meV and the orbital energy AFE ~ 500ueV .

In comparison with the previous measurement, here the reservoirs coupled to the quantum
dot are all biased with the same voltage Vg. Consequently the quantum dot can be
considered as being coupled to a single reservoir with the Fermi energy defining by the
voltage Vi. The typical response of the QPC to a change of V}; can be seen in figure
1.7 (¢). Two effects are observed on the conductance of the QPC. First by changing V,,
the electrostatic environment of the QPC is directly changed, and this effect is the so-
called cross talk between the gate and the QPC. Tt results in a mean slope of the current
Iopc with respect to V1. On the other hand, by making V;; more and more negative,
electrons are pushed outside the quantum dot. Each time the electronic population of
the quantum dot decreases (increases) by one, the conductance of the QPC increases
(decreases). This results in steps in the QPC current clearly observed in figure 1.7 (c).
In order to emphasize the signal, the QPC current /gpc can also be derived with respect
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Figure 1.7: Charge detection.(a)SEM (scanning electron microscopy) picture of the
quantum dot device. The quantum dot (dark blue) is coupled to a reservoir (actually the
quantum dot is coupled to two reservoirs, but they are both voltage biased at Vg, and
they can therefore be considered as a single reservoir). By using an additional gate in
close vicinity of the quantum dot, a channel can be designed and be capacitively coupled
to the quantum dot. Its conductance is directly linked to the electrostatic environment,
and hence to the number of electrons in the system. (b) The conductance of the QPC can
be measured by measuring the current flowing through the QPC Igpc in response to a
voltage bias excitation Vpe (here the voltage bias has been set at Vgpe = 500ueV. The
region where the QPC is the most sensitive is just after the last conductance plateau.
In this configuration, the channel is generally more coupled to the quantum dot and
its sensitivity is maximum. Inset : The working position of the QPC between the last
plateau and the zero conductance. (c) Signal of the QPC when the gate voltage Vj; is
swept. Some steps indicating exchange of electrons with the reservoir are clearly seen.
(d) Derivative of Igpc with respect to V.



1.3. Spins in quantum dots 15

to the gate voltage V. In this case a change of the electronic population is represented
by a peak (Figure 1.7 (d)). These current steps depend obviously on the parameters of
the system, and especially on the tunnel barriers with the reservoirs. For a weak (strong)
tunnel coupling, these current steps will be quite sharp (smooth), resulting from the
tunnel coupling between the quantum dot and the reservoir.

In addition, as it will be shown in the following, a single QPC can probe the electronic
population of multiple coupled quantum dots [11, 12, 13]. Indeed the capacitive coupling
between the QPC and a quantum dot depends on their distance. For a multiple quantum
dot system, the distance between each quantum dot and the QPC is different giving a
different signal when the electronic population of the quantum dots changes. In addition,
in comparison with the transport measurement scheme, the charge detection allows to
probe the last electron leaving the quantum dot, and this will turn out to be crucial in
order to perform spin manipulations. But before considering such manipulations, we will
discuss a little about the physics of spins in quantum dot systems.

1.3 Spins in quantum dots

Until now we mainly discussed about the charge of an electron in a quantum dot. We
can therefore imagine to use this degree of freedom to build a quantum bit (qubit).
For instance, this qubit can be made of two coupled quantum dots containing a single
electron. The two states of the qubit would be |R) (|L)), the electron being in the right
(left) quantum dot. The main problem with such qubits is the short coherence time (it
corresponds to the time during which the phase information of a superposition of state
can be conserved and it will be explained in the following) [14, 15, 16]. The rather-short
coherence time (~ 1ns) is mostly due to the charge noise in the system. The answer to
this issue can be found in the other degree of freedom of the electron : its spin. At a first
glance, the dynamic of the electron spin is totally decoupled from the one of the charge.
In other words, these two degrees of freedom belong to two distinct subspaces, and as
a results the spin is not coupled to the electrical fluctuations. Consequently the charge
noise should not affect the spin, and therefore its coherence time should be much larger
than the one of the charge. During this thesis, all spin manipulations have been done
with two electron spins, and we will mainly discuss about this case. However to introduce
the issue of spin in quantum dots, we will start by considering the simplest case of one
electron spin in a single quantum dot. The way to measure it will be briefly explained,
and will be more detailed in the fourth chapter. In addition the concept of relaxation
and decoherence will be introduced. These two processes lead to a loss of information,
and are important issues in the context of quantum information manipulations.
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1.3.1 Spin states

The spin is an intrinsic property of a particle like its mass or its charge. The charge is
coupled to electric fields, while the spin is coupled to magnetic fields. Electrons exhibit
a spin 1/2. The spin operator S = (5;, S, S.) is an angular momentum. It means that
its 3 components are observable and verify the commutation relations [S;, S;| = ihe;; Sk,
where ¢;;;, is the Levi-Civita symbol :

1 if (iaja k) = (l’,y,Z) or (Z,Zlf,y) or (y,z,x)
gijk = 4 —1 1 (i,5,k) = (z,2,y) or (y,z,2) or (2,y, ) (1.7)
0 ifir=jori=korj==k

eiji is 1if (4, j, k) is an even permutation of (x,y, z), —1 for an odd permutation, and 0
if any index is repeated. It implies that the uncertainty principle concerns the measure of
a spin in the three spatial directions. In addition, as we have briefly mentioned, the spin
operators acts on a new space, the spin space g, where S? and S, constitute a complete
set of commuting observables. The space £g is thus spanned by the set of eigenstates
common to S and S, :

1 1
s?+ 1y = I Ly
2/~ 4" -2 (1.8)
Sy =+ Lpply
#1=9 -2 72

For the eletron (spin %) the space £g is therefore a two-dimensional space, with two
cigenstates [*3). In the following the notation used for these two states will be | ) (| 1)),
specifying if the spin state is aligned (opposite) with the external magnetic field. Now
we will consider the two cases often used to deal with spin qubits, a single electron spin,
and two electron spins.

Single electron spin states

We first consider a system composed of a single electron spin trapped in a single quantum
dot. There are two spin states, | 1) and | |), the Zeeman doublet. They are degenerated
at zero magnetic field, and their energy difference, the Zeeman energy E; scales linearly
with the magnetic field (Figure 1.8 ) [17]. This energy is written as E; = ¢*pupB where
g* = —0.44 is the Landé factor for the electrons in GaAs, up is the Bohr magneton, and
B the magnetic field. We consider in the following that | 1) (] {)) is the ground (excited)
state.

The first step towards using the spin as a qubit is to be able to measure it. The
readout of spin states has been achieved by using optical methods [18, 19, 20] or by
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Figure 1.8: Single spin states. The two single spin states are | 1) and | |) and their
energy difference E; scales linearly with the magnetic field.

using magnetic resonance force microscopy |21]. On the other hand electrical read out
of a single electron spin states is difficult. Indeed the only information that we can get
electrically from a quantum dot system is its charge state. But as it will be explained, the
spin state can be read-out by measuring its charge state. This technique of spin-to-charge
conversion has first been experimentally realized by Elzerman and co-workers in 2004 [4]
where they performed single shot destructive measurements of a single electron spin in a
quantum dot. The principle of this measurement is illustrated in figure 1.9. The idea is
to initialize an unknown spin state by setting the two spin state (| 1) and | |)) lower than
the Fermi energy of the reservoir. Then with a gate voltage pulse, the energy of | |) can
be set higher than the Fermi energy, while the one of | 1) is still below. Therefore if the
spin state was | J), the electron can tunnel out from the quantum dot, and be replaced
by one from the reservoir going into | ). Otherwise, if the system has been initialized in
the ground state | 1), it will remains in the same state all along the measurement scheme.
Consequently if the spin state is | |), we detect with the QPC an electron tunnelling
out from the quantum dot to the reservoir, and another one tunnelling in, otherwise we
do not detect anything. Here we see that probing the charge state of the system gives
information about its spin state. This is a spin to charge conversion.
Few remarks can be done about the measurement of the single electron spin state :

e To perform such measurements, the temperature has to be much smaller than the
Zeeman energy, T' < Ey = g*upB. Otherwise there are some non occupied states
in the reservoir at the energy of the ground state | 1), and the electron can tunnel
out even if it is in the ground state. In a magnetic field scale, a temperature equal
to 100mK is equivalent to 300mT. In the work of Elzerman, the magnetic was fixed
at 10T.
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Figure 1.9: Single spin measurements The idea of this measurement scheme is to set
one of the spin state above the Fermi energy of the reservoir. Then if the electron spin
lies in this state, the electron will tunnel out from the quantum dot to the reservoir. This
is the so-called spin-to-charge conversion.
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e This measurement scheme has to be done faster than the relaxation time. This
concept will be described in the next section, and we just mention here that the
relaxation is a process that "transform" the excited state (]) into the ground state
(1). Consequently such measurements have to be done before relaxation processes
might happen. The readout using the tunnelling of an electron from the quantum
dot to the reservoir, the tunnel coupling has to be tuned in order to let the electron
tunnel out before the relaxation happens (in the work of Elzerman, the tunnelling
rate T' has been set to T ~ (0.05ms)™!).

To be able to use a single electron spin as a qubit, we need to be able to manipulate
its state. In other words, we need to be able to prepare any state

) = cos(3)] 1)+ sin(3)e| 1) (1.9

where 0 € [0, 7] and ¢ € [0, 27]. To realize it, we need to couple the states | 1) and | |).
This can be achieved by using an oscillating magnetic field B,s. that is resonant with
the spin precession frequency in an external magnetic field B,,; oriented perpendicularly
to Bos. This technique is called ESR (Electron Spin Resonance) and allows to change
the angle 6 of the state |U) (equation 1.9). In the work of Koppens and co-workers
[22], they obtained a # = 7 rotation of the spin on the order of 100ns. The use of the
oscillating magnetic field can be replaced by an oscillating electric field. An electric field is
supposed to act only on the electron charge, but thanks to spin-orbit interaction, it enables
to perform the same kind of manipulation (EDSR : Electron Dipole Spin Resonance)
[23, 24]. We will describe later the spin-orbit interaction, and for the moment we just
mention that it allows to couple the spin and the charge degrees of freedom, allowing for
spin manipulation thanks to electric fields. The control of the angle ¢ (equation 1.9) is
achieved by letting the system evolves according to time in a non zero magnetic field.
Due to the readout condition of a single spin qubit, and the relatively slow single qubit
rotations (~ 100ns |22, 23|), physicists have been trying to find a new "basis" to build a
qubit in GaAs quantum dot, allowing to overcome these difficulties. Over the last years,
a particular attention has been devoted to the S — Ty qubit made of two electron spins in
a double quantum dot, and we will now introduce the spin states of two electron spins.

Two electrons spin states

In this part we consider two electrons trapped in a single quantum dot. In this thesis, all
the spin manipulation have been done with two electron spins in a double quantum dot.
Even if the system is different, the discussion about the spin states is still relevant. The
key point to establish the spin states of an electron pair is to remind that electrons are
fermions, so the wavefunction describing them has to be antisymmetric. As mentioned
previously, the spin and the charge degrees of freedom "live" in two different subspaces.
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Therefore the wavefunction |¥) can be decomposed into two parts, one for the spin degree
of freedom |y;) and one for the orbital degree of freedom |®,).

() = Do) @ [xs) (1.10)

The mathematical operator ® denotes that |¥) is a product state. Consider at first
the spin degree of freedom of these two electrons. Each of them can be either in the
state | 1), or | J). So for two electrons, their spin are either aligned, or opposite giving
the states {| T,1),] 4,4),| T.4),| 4,1)}. For the orbital degree of freedom, we will just
consider the first two orbital levels, that we called the ground and excited state (|g) and
le)). Considering first the two aligned spin states {| T,1) and | |, ]), it is clearly seen that
they are symmetric, meaning that by changing the spin state of the first electron with
the one of the second the final state is equal to the intial one. Consequently the orbital

part of the wavefunction has to be antisymmetric and we get the first two triplet states
|7, ) and |T_) :

Ty) = (le,g) = lg,e)) @ [ 1,1)
T-) = (le,g) = lg,e)) @ [ 1, 1)

In the following, we will intentionally forget the orbital part of the wavefunction, and
we will just write |T.) = | 1,1) and |T_) = | |, {).

Now we consider the two opposite spin states. The two electrons are undistinguishable.
So the spin part of the wavefunction has to be either | T, 1) —| |, 1), or | 1,4) +| J,T). In
the first (second) case, the spin part of the wavefunction is antisymmetric (symmetric),
and therefore the orbital part has to be symmetric (antisymmetric), giving the singlet
|S) and the triplet |Tp) :

(1.11)

To) = (le;9) —lg,e) @ (| 1, 4) + [ 1, 1)
15) = (g, 9) @ (I 1.4) = 1, 1))

Finally we get four spin states, one singlet |S) and three triplets {|Ty), |T%), |T-)}.
The energy of the two triplets |T.) = | 1,71) and |T_) = | |,]) is linearly dependent on
the magnetic field via the Zeeman Energy (Figure 1.10). In addition the three triplet
(72) = |11, I7) = | 4,40, [To) = | .4) +| L, 1)} are higher in energy compared
to the singlet |S) = | 1,1) — | |,T) due to the charge part of the wavefunction. Indeed
the orbital energy AFE has to be paid. The discussions about the manipulation and the
readout of such spin states will be detailed in the fourth chapter. Two more concepts
related to spins have to be introduced : the relaxation and the decoherence. We have
already mentioned these two processes, and we will now developed them through the
example of a fluctuating environment.

(1.12)
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Figure 1.10: Two electrons spin states in a single quantum dot The above schemes
gives the four spin states of an electron pair. They are antisymmetric : for the singlet
(triplets), the orbital part of the wavefunction is symmetric (antisymmetric) while the
spin part is antisymmetric (symmetric).
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Figure 1.11: Relaxation and decoherence of two-level system. (a) The Bloch
sphere representation of the qubit state (equation 1.14). (b) Relaxation and (c) dephas-
ing of the quantum system corresponding to a loss of information.

1.3.2 Relaxation and decoherence of a spin

Until now we have considered a quantum system, an electron or two electron spins,
without taking into account of the interaction of this system with its environment. The
environment will disturb the quantum system, and since the interaction between them is
uncontrolled, it can be seen as a loss of information stored in the quantum state of the
system. The dominant interactions of the electron spin of a GaAs quantum dot with its
environment are the hyperfine interaction with the host nuclei and the spin orbit. Before
we describe more precisely these two interactions, we will consider a simple model where
a two-level quantum system (TLS), a qubit, interacts with a fluctuating environment
[25, 26]. This model has the advantage to be quite easy to understand and to describe
the concept of relaxation and decoherence.

The state of the qubit can be written, up to a global phase, as :

) = cos(3)] 1) + sin(5)e] 1) (1.13)

To get a picture of such a state for a TLS, the so called Bloch sphere can be introduced.
Its poles correspond to the qubit ground state | ) and excited state | |) (figure 1.11 (a)).
Any superposition of states | |) and | 1) is represented by a point on the Bloch sphere,
defining the two angles 6 and ¢ (equation 1.13).

The coupling of the qubit with its environment leads to two processes :

e If the qubit is coupled to a dissipative environment, it relaxes after some time from
the excited to the ground state. In this case there is an energy transfer from the
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quantum system to the environment and it can be seen as a loss of information
about the angle 6 (figure 1.11 (b)). The time scale describing such a decay is
referred to as 77. Relaxation can be viewed as the decay of the initial longitudinal
(parallel to the quantification axis) polarization (4.) to its equilibrium state. 6, .
represent the Pauli matrices.

e On the other hand decoherence refers to the decay of the transverse polarisation
(61) (61 includes both 6, ). The timescale associated to such a process is generally
defined as T5. Tt corresponds to a loss of information about the angle ¢ (figure 1.11
(¢)). In contrast to the relaxation, decoherence does not imply any energy transfer.

To illustrate these two processes, we consider the qubit interacting with a fluctuating
environment. The system is then described by the hamiltonian :

H = g[wzdz + 8w, (t)7, + dw, ()G, + dwy(t)d,] (1.14)
Here hAw, is the energy splitting of the qubit. For instance in the case of a single
electron spin trapped in a quantum dot, it corresponds to the Zeeman energy defined by
the external magnetic field £, = F| — F} = ¢g*ugpB. In addition the qubit is coupled to
a fluctuating environment and this appears through hdw, , .(t), that are the fluctuations
along the x,y,z directions. For example in the case of a single spin qubit made of GaAs
quantum dots, these fluctuations can arise from the fluctuations of the nuclear spins as
we will see later.
The relaxation is a process that allows an excited state to exchange energy with the
environment in order to "relax" in the ground state. Therefore to induce relaxation, the
ground and the excited states need to be coupled. This is done by the transverse fluctua-
tions along the x and y axis (0w, ,(t)). Fluctuations along the longitudinal axis z do not
allow relaxation since they do not couple | ) and | |). In addition as we said, the relax-
ation is accompanied by an energy transfer from the qubit to the environment. Due to
the energy conservation, it means that the environment has to exhibit a non-zero density
of state at the energy splitting of the qubit. This can be seen in GaAs quantum dots by
studying the relaxation time as a function of the magnetic field giving rise to the energy
splitting Aw,. For a single electron spin trapped in a quantum dot, the main relaxation
process is due to the spin-orbit interaction. In this case the system can exchange energy
with the phonons. They have a larger density of states at high energies, and it has been
demonstrated [7] that the relaxation of a single spin is faster for higher magnetic fields
(leading to larger qubit energy splitting).
The fluctuations along the z axis dw,(t) leads to dephasing or decoherence. Indeed a qubit
in a superposition of state a| 1) + ] |) (a? + 32 = 1) undergoes due to w, a Larmor pre-
cession in the (z,y) plane. The Larmor precession is changed by the fluctuations dw, (),
and this results in the accumulation of an extra unknown phase d4(7) = [ dw.(t)dt. In
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contrast with relaxation, in this case all the noise spectrum of the fluctuations along the
z axis contributes to the decoherence. The way to measure this two processes experimen-
tally will be described in more detail in the chapter 4. For now on we will have a look at
the two particular interactions with the environment in the case of GaAs quantum dot
systems : the hyperfine interaction with the host nuclei and the spin-orbit interaction
which links the orbital subspace of an electron to its spin subspace.

1.4 Hyperfine interaction

The hyperfine interaction between the electron spin trapped in a GaAs quantum dot
and the host nuclear spins present in all III-V semiconductors leads to the strongest
decoherence effect [27, 28, 29, 30, 31]. As we will see, the interaction with the nuclear
spins can be seen as a slowly fluctuating magnetic field along the z-direction. It induces an
extra unknown phase leading to decoherence as explained previously. We will introduce
here the hyperfine interaction by considering one electron spin S in a single quantum dot
interacting with the surrounding nuclear spins Iy. Then a semi classical approach will be
used to describe the effect on the spin dynamic 32, 33].

The hamiltonian of the hyperfine interaction between a localized electron in a quantum
dot and the host nuclear spins can be written as :

th = h’YeSZAka (115)
k

where Ay is the hyperfine coupling constant between the nuclear spin k I and the
electron spinS, and ~, = ihﬂ is the gyromagnetic ratio for electron spin S. A, can be
written Ay = Avg|¥(r.)|?, where A is the average hyperfine coupling constant, vy is the
volume of a crystal unit containing one nuclear spin, and |¥(r;)[* is the value of the
electronic wavefunction W(r) at the position of the nucleus k (figure 1.12 (a)). In GaAs
A~ 90ueV [34].

The precession frequency of the electron is much greater than the precession frequency
of the nuclei, because the g* factor of the nucleus is 1000 times smaller than the one of
the electrons. Consequently we can consider, in a first approach, that the electron sees
the nuclear spins as frozen. Therefore the quantum operator ) , AL, can be substituted
by an effective nuclear hyperfine magnetic field B,,,., the so-called Overhauser field. The
field B,,,,. corresponds to the magnetic field felt by the electron spin trapped in the quan-
tum dot. If the nuclear spins are fully polarized, |B,,,.| ~ 5T [34], independent of N, the
number of nuclei, because A, the average hyperfine constant does not depend on N. How-
ever in thermal equilibrium with typical temperature (7" > 10mK), the thermal energy
kgT (~ 10peV at 100mK) dominates the Zeeman energy of the nucleus (~ 2.5neV at
Bezt = 100mT), and also the hyperfine energy (~ 0.1 —1ueV’). Consequently the average
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Figure 1.12: Hyperfine interaction between an electron spin in a quantum dot
and the host nuclear spins of the semiconductor (a) A single electron spin in-
teracts with many nuclear spins. The coupling depends on the value of the electronic
wavefunction at the position of the nucleus. (b) The interaction with all the nucleis can
be replaced by a classical magnetic field énuc.
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effective nuclear magnetic field is zero, but its distribution along the three directions is
gaussian with spread Ap \/LN For N = 108, which is the typical number of nuclei over-
lapping with the wavefunction of an electron spin trapped in a quantum dot, Ag ~ 5mT'.
Then the effect of nuclear spins is often seen as a statistical nuclear field which fluctuates
around 0 with spread Ap . The timescale of these fluctuations is ~ 1s [35], which is
consistent with dipole-dipole mediated nuclear diffusion [36]. The statistical distribution
of the nuclear field has been measured in different kind of systems (optical and electrical
dots) and it varies from 1 to few tens of mT |37, 38, 39, 40].

To conclude the electron spin feels an effective magnetic field B = B, +B,,..., where B,
is the external magnetic field applied to the sample. The nuclear spin dynamics being
much slower than the electron spin dynamic, we can consider this effective magnetic field
as being fixed during the electron spin manipulation. However between the repetition of
the electron spin manipulation, the effective magnetic field can be different. This is the
quasi-static approximation. This allows us to write the Hamiltonian as an electron spin
interacting with an effective magnetic field H.ff = h7.B.S = hve(Best + Bpuc).S. The
equation of motion of the spin S in a fixed magnetic field B is given by [33]

S(t) = (So.-n)n + [Sy — (Sp.n)njcos(wt) + [(Sp — (Sp.n)n) x njcos(wt) (1.16)

with Sy the initial spin, n = % and w = 7.B the Larmor frequency. The first term
is the projection of the spin along the quantification axis. The two others give the
precession in the plane (x,y) induced by the magnetic field. Although the electron spin
precession frequency allows to consider the nuclear spins as frozen, the effective magnetic
field fluctuate from one measurement to the others. Consequently equation 1.16 as to be
averaged over the nuclear magnetic field distribution. Then the time dependence of the
electron spin over a large number of measurements is given by [33] :

t
2T

t
2T

< S(t) >= %{1 +2(1 — 2( )2} (1.17)

)*)ewp|—(

where T = h_ is the time ensemble average decoherence time, Ap being the

amplitude of the maegnetic field fluctuations. As it has been seen, the order of magnitude
of these fluctuations is Ag ~ bmT. It gives a time ensemble average decoherence time
T3 equal to ~ 10ns which has been measured in [27]. To reduce these fluctuations,
some techniques of spin echo |27, 41, 42, 43|, well known in the NMR (Nuclear Magnetic
Resonance) community, can be used. The idea is to take advantage of the slowly evolving
nuclear magnetic field to cancel the unknown phase acquired by the electron spin. Another
way could be the use of dynamical nuclear spin polarisation (DNP) [44, 45]. Recently it
has been demonstrated that the coherence of a spin qubit can be enhanced by operating it
as a feedback loop that controls the nuclear spins with which the electron spins interacts
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[41]. To conclude we see that the nuclear spin fluctuations along the Z axis leads to
dephasing (decoherence). Previously we mentioned that these fluctuations exist in the
three dimensions (x,y,z). The fluctuations along the & and 3 axis could induce relaxation.
For the electron spin, the nuclear spins can be seen as a bath with which it can exchanges
energy and momentum. But the density of states of this bath is finite only at the Zeeman
energy of the nuclear spins. The g* factor of the nuclear being 1000 times smaller than
the one of the electron, the fluctuations of the nuclear spins along the £ and ¢ axis can
induce relaxation of the electron spin only at low magnetic fields [39]. We will come back
to this point in the chapter 4, and for now on we will have a look at another interaction,
known as the spin-orbit interaction.

1.5 Spin-orbit interaction

In an atom, the electron is orbiting with velocity 2 (m being the electron mass) in the
electric field E of the proton. In the frame of the electron, the motion in the electric field
gives rise to an effective magnetic field B;,; = —#p x E with ¢ the light velocity. This
effective or internal magnetic field interacts with the spin of the electron resulting in the
spin-orbit coupling Hgo = —pugBin: with pg the magnetic moment of the electron spin.
In other words the spin-orbit interaction couples the spin degree of freedom with the
charge degree of freedom, and their relative subspace are therefore no more independent.
The spin states are then no more an eigenstate of the system and the wavefunction does
not factorize in a pure spin and orbital component. In the literature, the expression
"pseudo-spin" is commonly used. In a potential (E = —VV) the electron experiences
the spin-orbit interaction :

HSO = —W]‘%CQU.Q) X (VV)) (118)

mg being the mass of the free electron and o = (o,,0,,0,) the Pauli matrices. Con-

cerning an electron in a crystal lattice, the spin-orbit interaction arises for the same rea-

sons, since the electron feels the electric fields generated by the charged atoms in the lat-

tice. The hamiltonian 1.18 can be viewed as an effective magnetic field B,y o< p x (VV)).

This results in a splitting of the spin states even at zero magnetic field. The strength of
the spin orbit coupling in bulk structure depends above all on two things :

e The symmetry of the crystal is of direct relevance. In a crystal with inversion sym-
metry, all electronic states are at least doubly degenerated. This is the consequence
of the requirements imposed by the time reversal symmetry and inversion symmetry.
Indeed the time reversal symmetry implies that (k) = E|(-k), where E; 3 (k)
is the energy dispersion of the lowest conduction band and (,]) the two possible
pseudo-spins. In addition the inversion symmetry implies that £y (k) = E4(-k). Put
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together, these two requirements gives E(k) = E|(k), and then the spin states are
degenerated. On the other hand, in a crystal lacking the inversion symmetry (called
bulk inversion asymmetry), the condition Ey(k) = E;(-k) is not necessary, and a
splitting can occur even at zero magnetic field. This is the case of the zinc-blende
structure of GaAs, which exhibits a bulk inversion asymmetry. This contribution
to the spin-orbit interaction is known as the Dresselhauss term [46]. Due to con-
finement and by using symmetry consideration, the Dresselhauss contribution to
spin-orbit interaction in 2D can be written Hp = B(—p,0, + pyo,), with g the
Dresselhauss coupling constant.

e Moreover another contribution to the spin-orbit interaction arises from the asym-
metry of the confinement potential. Indeed the potential trapping the electron in
a 2DEG is triangular shaped. This contribution is known as the Rashba spin orbit
term. To understand it in an intuitive way, we consider the potential oriented along
the growth direction z, E = (0,0, E,). Substituting this potential in the equation
1.18 yields to the following form, Hr = a(—p,0,+p,0,), with a ~ |E,|, the Rashba
coupling constant.

A convenient way to describe the magnitude of the spin-orbit interaction is the spin

orbit length lgp, defined as the length after which a spin has undergone a 7-rotation when
moving under influence of the spin-orbit effective magnetic field. In GaAs, this length
has been measured and is of order of 1-10um [47].
The size of a lateral quantum dot (~ 40nm) is then typically much smaller than the
spin orbit length lgo. Therefore we can reasonably expect that the spin orbit interaction
weakly affects the electron spin states in a quantum dot. Indeed since the electron is
bound in a quantum dot, it does not have a momentum < p,, >= 0. Consequently the
spin orbit does not couple directly the Zeeman doublet because < n,1T |Hso|n,{>~<
n|psy|n ><T |0y $>=0, where n labels the orbital levels in the quantum dot. But the
spin orbit can couple levels with different orbital and spin < n',1 |Hgo|n,># 0, with
n # n’. Then we can write down the two "new" spin eigenstates | 1)°¢ and | |)*“inside
a quantum dot under spin orbit interaction (at first order) :

g 1)°7 =1g 1) +egrle 1)

1.19
1905 = g )+ 2ple 1) (1-19)

where |g 1) (]g J) ) corresponds to a spin up (down) in the ground state of the trapping
potential, and |e 1) (|e |) ) to a spin up (down) in the first excited state of the trapping
potential. €4 and ¢, are related to the strength of the spin-orbit coupling.
Finally we see that an electric field which couples to the oribtal degree of freedom of
an electron, can also acts on its spin. This lead to relaxation [48, 49, 50|, but can also
serve to drive coherent spin manipulations [23]. In addition it has been demonstrated
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[51, 52] that topological spin manipulations (see chapter 3) can be obtained if the electron
is transported adiabatically along a closed path under spin-orbit interaction. It will be
developed in the third chapter.
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CHAPTER 2
Device fabrication and experimental
set-up

Résumé

Dans ce chapitre, nous présentons briévement le dispositif expérimental utilisé tout au
long de cette thése ainsi que la fabrication des échantillons. Dans un premier temps,
nous décrirons les techniques de nanofabrications permettant de réaliser les échantillons
de boites quantiques latérales, comme la lithographie ou la gravure. Une description
succincte de chaque étape de fabrication sera donnée. Par la suite, une bréve description
du réfrigérateur a dilution permettant de refroidir un échantillon a des températures
proche du mK sera exposée. Enfin, I'"électronique" utilisée durant cette thése, comme
par exemple les sources de tensions ou encore les amplificateurs, sera décrite.
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Introduction

To manipulate electron spins trapped in quantum dot systems, some experimental con-
straints have to be overcome. They can be divided into three parts :

e In the context of lateral quantum dot systems, the confining potential is defined
by voltages applied on metallic gates. These gates have to be fabricated by using
nanofabrication techniques. In addition, the 2DEG, where the quantum dot system
is located, is embedded 100nm below the surface. In order to measure the device,
it has to be contacted.

e Due to the typical energy scale of a quantum dot (the charging energy Ec and
the orbital energy are on the same order 1meV ~ 10K), the devices have to be
measured at low temperature. This is achieved by cooling down the sample thanks
to a dilution refrigerator.

e All the electronics used in the experiment has to be low noise due one more time
to the energy scale of such systems. By considering a gate lever arm (converting
a gate voltage into energy) equal to 0.1 (being the typical order of magnitude of
the gate lever arm «), it means that the voltages sources have to be very stable
in front of 10mV in order to minimize the potential fluctuations. In addition all
the spin manipulations that we perform in this thesis are done by manipulating
electric fields with gate voltages. For instance the exchange coherent oscillations
that we will present in chapter four are controlled by defining the energy splitting
of two spin states thanks to gate voltages (see chapter 4). It necessitates sufficiently
low noise on the voltage sources used. Moreover the typical signal extracted from
a GaAs quantum dot systems is relatively small (Igpc ~ 100pA). Therefore all
the acquisition chain has to be engineered in order to be able to detect such small
signals.

2.1 Device fabrication

Before manipulating and measuring an electron spin, we have to be able to define the
confining potential. Starting from a bare wafer of GaAs/AlGaAs with a 2DEG, the elec-
tron confinement in a plane is already ensured. In order to ensure the confinement in the
two other dimensions, it has been explained in the first chapter that an electrostatic po-
tential could be engineered by applying negative voltages on metallic gates deposited at
the surface of the wafer. The set of gates allowing for such potential has to be fabricated.
Although the nanofabrication techniques employed during this thesis are somehow stan-
dard and do not present any particularity, we will give the main requirements in order
to get a measurable sample. For instance we mentioned the necessity to get a system
with energy scale much smaller than the temperature. We have seen that the charging
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Figure 2.1: Description of a lithography step. The first step consists of spin coating
a photo or electro sensitive resist. Then this resists is exposed through a mask designing
a pattern and developed. Afterwards a metal is deposited on the surface of the sample.
Finally the metal deposited on the top of resist is removed, and only the one deposited
directly on the top of the sample remains. This is the so-called lift-off step.

energy, the energy needed to add an electron into a quantum dot, and the orbital energy,
defining the single particle level spacing, depends on the quantum dot size. For instance
a size close to ~ 50nm gives a charging energy and an orbital energy equal to ~ 1meV/,
equivalent to ~ 10K. These energy scales set a temperature limit beyond which thermal
excitations do not permit any manipulations. Then the first requirement is to be able to
fabricate a set of gates allowing for creating a potential whose size is sufficiently small in
order to get an energy scale of the quantum dot much smaller than the thermal energy.
In addition the 2DEG where the quantum dot system is located, is embedded 100nm
below the surface of the sample. In order to probe the system we need to contact it.
In addition to avoid any short between these contact, one step of etching is required.
Therefore several steps of nanofabrication are required. As we will see, all these steps
can be done by using standard photo or electron lithography.

2.1.1 Lithography process

To design devices at nano or micro scales, the use of lithography is of direct relevance.
The principle is the same, whether photo or electron lithography are used (Figure 2.1):

e A layer of photo (or electron) sensitive resist is spin coated on the heterostructure
surface. This results in a uniform thin layer. The choice of the resist depends
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obviously on the technique used (photo or electron lithography). In addition the
thickness of the resist layer can vary from ~ 100nm to ~ 1um, depending on the
resist used and on the spin coating duration.

e The resist is exposed with a beam of light (or electrons). The wavelength of the
light (electrons) defines the smallest size of the objects which can be patterned.
The photo lithography is done with photons in the UV range (Ayy ~ 200nm), and
consequently we are not able to use it in order to define nanometer size patterns,
which is generally done with electron lithography. For a positive resist, the exposed
part becomes soluble in the chemical developer, and can be consequently removed.
For a negative resist, the inverse happens.

e Afterwards a layer of metal is deposited uniformly on the surface of the sample by
using a metal evaporator. The desired metal thickness imposes the use of a resist
whose thickness is much larger than the metal. Otherwise some problem can be
encountered during the removal of the resist, called "bridging". We generally try
to use a resist layer at least three times thicker than the metal layer.

e The last step is the removal of the resist by using solvents like acetone. Afterwards
all the metal which was sitting on the top of resist is removed, and only the desired
pattern remains. This is the so-called "lift-off".

2.1.2 Etching

As we will see, a step of etching is required. Indeed we want to remove some part of the
2DEG in order to avoid any shorts between the ohmic contacts(see after). Several etching
techniques can be employed. The one used during this thesis is IBE(Ton Beam Etching).
It consists of attacking the surface of the sample with ions (Argon) that have been
accelerated. In order to protect the part of the sample which don’t have to be etched, a
metal mask (Aluminium) is deposited on the surface, as explained in the previous section.
By using an IBE machine, the heterostructure can be etched, except for the part covered
by the aluminium mask. Indeed the GaAs is etched much faster than the aluminium (for
100nm of etched GaAs, only few nm of Al are generally etched). Then the aluminium
layer is removed with NaOH (Figure 2.2).

2.1.3 Nanofabrication steps

Thereby all the nanofabrication steps can be done by using these techniques sequentially
in five steps. All these steps have been achieved in the clean room of the laboratory and
we describe here the goal of each of these steps (Figure 2.3). The complete recipe can be
found in annexe.
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Figure 2.2: Description of an etching step. After deposition of a metal layer (Alu-
minium), the sample is etched using IBE (Ion Beam Etching). The metal acts as a mask
and only the part of the surface not covered by the metal is etched. Afterwards the metal
is removed.

e Alignment marks : Starting from the bare wafer of GaAs/AlGaAs, metallic crosses
(Ti-Au) are deposited on the surface of the sample in order to align the following
steps together (yellow parts in figure 2.3 (a)). This is done by using photo lithog-
raphy. The alignment requirement in our case is of the order of ~ 1um.

e Mesa etching : As we will see, the 2DEG is contacted by the ohmic contacts.
Without etching the 2DEG all these contacts would be shorted via the gas. The
electrical isolation is guaranteed when all the Si donors in the AlGaAs layer are
removed during the etching process, since they provide the electrons to form the
2DEG. The remaining unaffected regions by the etching form a conducting area
called the "mesa" (blue parts in figure 2.3 (b)). An aluminium mask is designed with
a photo lithography machine, and then the heterostructure is etched with an IBE
machine. Although the electrical isolation is ensured when all the Si donors in the
AlGaAs layer are removed, we have etched away around 100nm of heterostructure
in order to do not take any risks. The aluminium layer is then removed by using a
highly concentrated NaOH chemical solution.

e Ohmic contacts :The 2DEG is embedded 100nm below the surface of the sample.
So first we have to contact it, in order to perform measurements. The idea is to
diffuse a metal alloy to define an electrical contact with the gas. This is done by
rapid thermal annealing (RTA) of surface electrodes (orange parts in figure 2.3 (¢))
made out of a sandwich of nickel and gold-germanium. During the RTA process, the
electrode metal melts, diffuses into the heterostructure and forms an ohmic contact
with the 2DEG. The incorporation of germanium plays two roles. First of all, with
gold it forms an eutectic with a melting point around 360°C". It allows us to avoid
to anneal the sample at the gold melting point (1064°C'). At this temperature Ga
atom of the heterostructure would sublimate, and then the wafer would be damaged



38 Chapter 2. Device fabrication and experimental set-up

(Sublimation point 490°C'). On the other hand germanium atoms provide dopants
in the GaAs region near the metal interface reducing thereby the heterostructure
diffusion barrier formed between the metals and the semiconductor. The nickel
plays an important role to improve the uniformity of the contacts, and to enhance
the adhesion of the electrode to the substrate. This will be really appreciated when
we will have to wire bond the sample. One more time this step is done with a
photo lithography machine. The typical resistance of 200 um? contact between the
surface and the 2DEG is equal to ~ 1kQ at low temperature (7' < 4K).

e Thin gates : In order to define the actual device geometry, a set of thin gates
has to be made. Due to the typical size of the potential that has to be reached
(~ 50nm), it induces some constraints on the gate sizes. That is the reason why
a step of electron lithography has first to be made in order to define the thin gate
patterns (middle of the sample in figure 2.3 (d)). Therefore the desired geometry
of gates ~ 25nm thick (5nm of Ti and 20nm of Au) is deposited on the central part
of the wafer (mesa, blue in figure 2.3 (d)). It allows for defining a typical potential
size equal to ~ 50nm. By considering a parabolic quantum dot, its size d is related
to the orbital energy A by the formula d = \/%. Then with d ~ 50nm, we get

A ~ 1meV.

e Large gates : Finally large gates (yellow part in figure 2.3 (e)) are patterned to
contact the bonding pad (ohmic contacts) with the thin gates. There are two main
reasons to separate this step from the previous one. First due to the etching of the
heterostructure, there is a stair ~ 100nm high between the mesa and the rest of
the wafer. Then the gate thickness (~ 20nm)deposited in the previous step could
be a problem. In addition the time needed to "write" a pattern with the electron
lithography process is much longer than the photonic one.

Finally when all these steps have been realized, the sample is glued on a chip carrier.
Then the sample bonding pads are wire bonded to chip carrier. The sample is finally
ready to be measured.

2.2 Cryogenics

As our experiments required to work at temperature 7" < 10K we briefly review the
functioning of a dilution refrigerator which allows for temperature 7' ~ 10mK and for
specific details we let the reader refer to [1]. The main idea proposed originally by
London, Clarke and Mendoza [2] stands on the thermodynamic properties of >He and
‘He mixtures. If the temperature of any solution 3He/*He of more than 6% 3He is
sufficiently lowered, the mixture will separate into two phases. One of these phases will
(at T < 0.8K) be almost pure *He. The other one will be mostly pure *He, but even
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Figure 2.3: Description of the nanofabrication steps. (a) Alignement crosses. (b)
Mesa etching. (¢) Ohmic contacts. (d) Fine gates. (e) Large gates.
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at T = 0, will contain a fraction of ~ 6% 3He impurity. This property is the key of the
operation of dilution refrigerator. If we consider a mixing chamber (Figure 2.4, mixing
chamber) holding a solution of 3He — *He, at low temperature the light phase rich in
3He atoms will float on top of the heavy phase poor in >He atoms. At the boundary of
the the two phases, an effective liquid-vapor interface of 3He develops below 0.7K. By
pumping on the poor >He phase, the equilibrium is broken. In order to re-establish the
equilibrium, ® He atoms from the rich 3 He phase will migrate towards the poor one. This
process is an endothermic process, and the energy will be taken from the environment,
being in our situation the mixing chamber and the sample thermally anchored to it. By
injecting back the 3He into the mixing chamber, it can be reproduced continuously and
enables in principle to cool down samples below 10mK. During this thesis, two different
dilution refrigerators have been used. The one used for the third chapter allows for base
temperature equal to ~ 10mK. The one used for the fourth and fifth chapter should
allow for the same base temperature, but due to contact between a RF coaxial line and a
4K part, the working temperature was equal to ~ 150mK. Figure 2.4 shows a schematic
representation of the dilution stage of a refrigerator.

2.3 DC electronics

To measure lateral quantum dot systems, the electronic set-up is very important. Indeed
the confining potential is defined by applying negative voltages on metallic gates. As
mentioned in the introduction, the typical energy scale of such a potential is of the order
of ~ ImeV. The first requirement is then to get a low noise and stable voltage source.
Moreover to probe the system we measure currents which are quite small ( 100pA).
Therefore the acquisition chain has to be low noise too.

2.3.1 Voltage sources

The voltages sources used in our experiment is based on a commercial digital-to-analog
converter (DAC) chip : Linear Technology LTC2604. The main interests of this chip is
its 16 bits, the operating range -5V to 5V, its low output nois<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>