We study the disorder dependence of the phase coherence time of quasi
one-dimensional wires and two-dimensional (2D) Hall bars fabricated from a high
mobility GaAs/AlGaAs heterostructure. Using an original ion implantation
technique, we can tune the intrinsic disorder felt by the 2D electron gas and
continuously vary the system from the semi-ballistic regime to the localized
one. In the diffusive regime, the phase coherence time follows a power law as a
function of diffusion coefficient as expected in the Fermi liquid theory,
without any sign of low temperature saturation. Surprisingly, in the
semi-ballistic regime, it becomes independent of the diffusion coefficient. In
the strongly localized regime we find a diverging phase coherence time with
decreasing temperature, however, with a smaller exponent compared to the weakly
localized regime.Comment: 21 pages, 30 figure