217 research outputs found

    Supersonic jet mixing enhancement by delta-tabs

    Get PDF
    The results of a continuing investigation of the effect of vortex generators, in the form of small tabs at the nozzle exit, on the evolution of a jet are reported. Primarily, tabs of triangular shape are considered, and the effect is studied up to an equivalent jet Mach number of 1.8. By changing the orientation of the tab with respect to the nozzle exit plane, streamwise vortex pairs of opposite sign were generated. This resulted in either an outward election of jet core fluid into the ambient or an inward indentation of the mixing layer into the core of the jet. A triangular shaped tab with its apex leaning downstream, referred to as a delta tab, was found to be the most effective in influencing the jet evolution. Two delta tabs, spaced 180 degrees apart, completely bifurcated the jet. Four delta tabs increased jet mixing substantially, more than by various other methods tried previously; the mass flux at fourteen jet diameters downstream from the nozzle increased by about 50 percent over that for the no tab case. The tabs were found to be effective in jets with laminar or turbulent boundary layers as well as in jets with low or high core turbulence intensities

    Effect of tabs on the evolution of an axisymmetric jet

    Get PDF
    The effect of vortex generators, in the form of small tabs at the nozzle exit, on the evolution of an axisymmetric jet was investigated experimentally over a jet Mach number range of 0.34 to 1.81. The effects of one, two, and four tabs were studied in comparison with the corresponding case without a tab. Each tab introduced an indentation in the shear layer, apparently through the action of streamwise vortices which appeared to be of the trailing vortex type originating from the tips of the tab rather that of the necklace vortex type originating from the base of the tab. The resultant effect of two tabs, placed at diametrically opposite locations, was to essentially bifurcate the jet. The influence of the tabs was essentially the same at subsonic and supersonic conditions indicating that compressibility has little to do with the effect

    Influence of stochastic estimation on the control of subsonic cavity flow – A preliminary study

    Get PDF
    This work aims at understanding how the different elements involved in the feedback loop influence the overall control performance of a subsonic cavity flow based on reducedorder modeling. To this aim we compare preliminary and limited sets of experimental results obtained by modifying some relevant characteristics of the loop. Our results support the findings in the literature that use of quadratic stochastic estimation is preferable to the linear one for real-time update of the model parameters. They also seem to indicate the merit of using more than one time sample of the pressure for performing the real-time update of the model through stochastic estimation. The effect of using two different sets of pressure signals for the stochastic estimation also corroborates previous findings indicating the need for optimizing the number and the placement of the sensors used in the feedback control loop. Finally we observed that the characteristics of the actuator can alter significantly the overall control effect by introducing in the feedback loop additional, undesirable frequency components that are not modeled and hence controlled. A compensator for the actuator is currently being designed that will alleviate this problem thus enabling a clearer understanding of the overall control technique

    Infinite dimensional and reduced order observers for Burgers equation

    Get PDF
    Obtaining a representative model in feedback control system design problems is a key step and is generally a challenge. For spatially continuous systems, it becomes more difficult as the dynamics is infinite dimensional and the well known techniques of systems and control engineering are difficult to apply directly. In this paper, observer design is reported for one-dimensional Burgers equation, which is a non-linear partial differential equation. An infinite dimensional form of the observer is demonstrated to converge asymptotically to the target dynamics, and proper orthogonal decomposition is used to obtain the reduced order observer. When this is done, the corresponding observer is shown to be successful under certain circumstances. The paper unfolds the connections between target dynamics, observer and their finite dimensional counterparts. A set of simulation results has been presented to justify the theoretical claims of the paper. © 2005 Taylor & Francis Group Ltd

    Modeling of subsonic cavity flows by neural networks

    Get PDF
    Influencing the behavior of a flow field is a core issue as its improvement can yield significant increase of the efficiency and performance of fluidic systems. On the other hand, the tools of classical control systems theory are not directly applicable to processes displaying spatial continuity as in fluid flows. The cavity flow is a good example of this and a recent research focus in aerospace science is its modeling and control. The objective is to develop a finite dimensional representative model for the system with appropriately defined inputs and outputs. Towards the goal of reconstructing the pressure fluctuations measured at the cavity floor, this paper demonstrates that given some history of inputs and outputs, a neural network based feedforward model can be developed such that the response of the neural network matches the measured response. The advantages of using such a model are the representational simplicity of the model, structural flexibility to enable controller design and the ability to store information in an interconnected structure

    Further development of feedback control of cavity flow using experimental based reduced order model

    Get PDF
    In our recent work we presented preliminary results for subsonic cavity flow control using a reduced-order model based feedback control derived from experimental measurements. The model was developed using the Proper Orthogonal Decomposition of PIV images in conjunction with the Galerkin projection of the Navier-Stokes equations onto the resulting spatial eigenfunctions. A linear-quadratic optimal controller was designed to reduce cavity flow resonance by controlling the time coefficient and tested in the experiments. The stochastic estimation method was used for real-time estimation of the corresponding time coefficients from 4 dynamic surface pressure measurements. The results obtained showed that the controller was capable of reducing the cavity flow resonance at the design Mach 0.3 flow, as well as at other flows with slightly different Mach number. In the present work we present several improvements made to the method. The reduced order model was derived from a larger set of PIV measurements and we used 6 sensors for the stochastic estimation of the instantaneous time coefficients. The reduced order model so obtained shows a better convergence of the time coefficients. This combined with the 6-sensor estimation improves the control performance while using a scaling factor closer to the theoretically expected value. The controller also performed better in off design flow conditions

    Seven tuning schemes for an ADALINE model to predict floor pressures in a subsonic cavity flow

    Get PDF
    This paper presents a simple yet effective one-step-ahead predictor based on an adaptive linear element (ADALINE). Several tuning schemes are studied to see whether the obtained model is consistent. The process under investigation is a subsonic cavity flow system. The experimental data obtained from the system is post-processed to obtain a useful predictor. The contribution of the paper is to demonstrate that despite the spectral richness of the observed data, a simple model with various tuning schemes can help to a satisfactory extent. Seven algorithms are studied, including the least mean squares (LMS), recursive least squares (RLS), modified Kaczmarz's algorithm (MK), stochastic approximation algorithm (SA), gradient descent (GD), Levenbergĝ€ "Marquardt optimization technique (LM) and sliding mode-based tuning (SM). The model and its properties are discussed comparatively. © 2009 The Institute of Measurement and Control

    Support vector networks for prediction of floor pressures in shallow cavity flows

    Get PDF
    During the last decade, Support Vector Machines (SVM) have proved to be very successful tools for classification and regression problems. The representational performance of this type of networks is studied on a cavity flow facility developed to investigate the characteristics of aerodynamic flows at various Mach numbers. Several test conditions have been experimented to collect a set of data, which is in the form of pressure readings from particular points in the test section. The goal is to develop a SVM based model that emulates the one step ahead behavior of the flow measurement at the cavity floor. The SVM based model is built for a very limited amount of training data and the model is tested for an extended set of test conditions. A relative error is defined to measure the reconstruction performance, and the peak value of the FFT magnitude of the error is measured. The results indicate that the SVM based model is capable of matching the experimental data satisfactorily over the conditions that are close to the training data collection conditions, and the performance degrades as the Mach number gets away from the conditions considered during training. ©2006 IEEE

    Parallel fuel injection from the base of an extended strut into supersonic flow

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76778/1/AIAA-1994-711-873.pd

    Flow and Noise Control in High Speed and High Reynolds Number Jets Using Plasma Actuators

    Get PDF
    The idea of manipulating flow to change its characteristics is over a century old. Manipulating instabilities of a jet to increase its mixing and to reduce its radiated noise started in the 1970s. While the effort has been successful in low-speed and low Reynolds number jets, available actuators capabilities in terms of their amplitude, bandwidth, and phasing have fallen short in control of high-speed and high Reynolds number jets of practical interest. Localized arc filament plasma actuators have recently been developed and extensively used at Gas Dynamics and Turbulence Laboratory (GDTL) for control of highspeed and high Reynolds number jets. While the technique has been quite successful and is very promising, all the work up to this point had been carried out using small high subsonic and low supersonic jets from a 2.54 cm diameter nozzle exit with a Reynolds number of about a million. The preliminary work reported in this paper is a first attempt to evaluate the scalability of the technique. The power supply/plasma generator was designed and built in-house at GDTL to operate 8 actuators simultaneously over a large frequency range (0 to 200 kHz) with independent control over phase and duty cycle of each actuator. This allowed forcing the small jet at GDTL with azimuthal modes m = 0, 1, 2, 3, plus or minus 1, plus or minus 2, and plus or minus 4 over a large range of frequencies. This power supply was taken to and used, with minor modifications, at the NASA Nozzle Acoustic Test Rig (NATR). At NATR, 32 actuators were distributed around the 7.5 in. nozzle (a linear increase with nozzle exit diameter would require 60 actuators). With this arrangement only 8 actuators could operate simultaneously, thus limiting the forcing of the jet at NATR to only three azimuthal modes m = plus or minus 1, 4, and 8. Very preliminary results at NATR indicate that the trends observed in the larger NASA facility in terms of the effects of actuation frequency and azimuthal modes are similar in both small GDTL and larger NASA jets. However, the actuation authority seems to fall short in the larger jet at higher Mach numbers, resulting in decreased amplitude response compared to the small jet, which is attributed at this point to the lack of sufficient number of actuators. The preliminary results seem also to suggest that amplitude of actuation tones is similar in both the small and larger jets
    corecore