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Abstract— During the last decade, Support Vector Machines
(SVM) have proved to be very successful tools for classification
and regression problems. The representational performance
of this type of networks is studied on a cavity flow facility
developed to investigate the characteristics of aerodynamic flows
at various Mach numbers. Several test conditions have been
experimented to collect a set of data, which is in the form of
pressure readings from particular points in the test section.
The goal is to develop a SVM based model that emulates the
one step ahead behavior of the flow measurement at the cavity
floor. The SVM based model is built for a very limited amount
of training data and the model is tested for an extended set
of test conditions. A relative error is defined to measure the
reconstruction performance, and the peak value of the FFT
magnitude of the error is measured. The results indicate that the
SVM based model is capable of matching the experimental data
satisfactorily over the conditions that are close to the training
data collection conditions, and the performance degrades as the
Mach number gets away from the conditions considered during
training.

I. INTRODUCTION

It is a well known fact that skin friction on air vehicles

reduces the maneuverability and agility while increasing the

fuel consumption. Material fatigue and damage to stores are

other related problems that point the pursuit of techniques

for reducing the skin friction. One alternative towards this

goal is the active control of near body aerodynamic behavior.

The practical significance of this work is on the model

development side of the above mentioned ultimate goal.

Feedback control performance on aerodynamic flow sys-

tems heavily depends upon the capabilities of a representative

model. The process under investigation nonlinear and the

governing dynamics is described by Navier-Stokes equations,

which display quite complicated behavior in aerodynamic
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neering, Sögütözü, Ankara, Turkey, Phone: +90-312-292-4064, Fax: +90-
312-292 4091 onderefe@ieee.org

Dr. Debiasi is with the Department of Mechanical Engineering, The Ohio
State University, Columbus, OH 43210, U.S.A. debiasi.1@osu.edu

Dr. Yan was with Department of Electrical and Computer En-
gineering, The Ohio State University, Columbus, OH 43210, USA;
present address: Seagate Tech Center, Bloomington MN 55435 U.S.A.
yan.39@osu.edu
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flows and this entails high sampling rates. The described

nature of the problem highlights how substantial the perfor-

mance at the modeling stage is. Modeling of such a process

using machine learning methods is one alternative that is

motivated also by the facts that real-time observations are

generally noise corrupted and even rough models of the

overall system constituents such as actuators, sensors and

system dynamics are unavailable. From an input-output data

processing point of view, the problem in hand is a good test

bed where machine learning algorithms can be applied. This

paper focuses on an increasingly popular tool named Support

Vector Machines.

In the past years, several soft computing tools have been

used for modeling of aerodynamic systems, for example

Neural Networks (NN) in [1-7], fuzzy logic in [8-11] and

SVM in [12].

In [1], Jacobson and Reynolds conducted a numerical

study on the control of wall shear stress in a boundary

layer by using feedforward NN as inverse controllers, which

showed skin friction reduction by about 8%. The study

of active laminar flow control [2] showed that a properly

trained NN can establish complex nonlinear relationships

between multiple inputs and outputs which are peculiar to

an active flow control system. The work demonstrates the

cancellation of wave disturbances in transitional boundary

layers by a pretrained neural models. Sensors measure either

wall pressure or wall shear stress. Training strategies and

performance measures are considered, and fault tolerance

capability of NN is emphasized. Faller et al., [3], obtained

a NN model of a pitching airfoil based on experimental

data. With limited training data, the model predicts unsteady

surface pressure topologies within 5% of what is available

in the experimental data. Given the actuator control signals,

the NN anticipates the interactions between the unsteady

flow field and airfoil. The NN has a very complex structure

configuration. Gradient descent is used for training and the

pressure values on the airfoil are estimated by using the

recordings of angle of attack and its time derivative. The NN

controller has 6-12-12-1 configuration, and a desired lift/drag

response is aimed to be observed. It is possible to extend the

results focusing on NN use in aerodynamic system modeling

(See [4-7] and the references therein).

As another alternative, Fuzzy Logic (FL) is a practical

framework for solving complicated problems by utilizing

expert knowledge. The practicality of the paradigm stems

from the fact that the human expertise is expressed in the

form of IF antecedent THEN consequent statements, i.e. the

task to be achieved is modeled through the use of linguistic
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descriptions. In [8], Cohen et al. use FL for the control of a

circular cylinder vortex shedding model. The fuzzy system in

[8] has been used to scale a control signal produced by a PID

controller, and it has been shown that such a strategy yields

significant improvement in the performance compared to the

sole PID solution. In [9], FL with triangular membership

functions is used for controlling the vortex flows on a generic

X29-A model. The fuzzy controller is compared with neural

controllers and predictive schemes. Dragojlovic et al. utilize

the fuzzy logic in improving the performance of a Com-

putational Fluid Dynamics (CFD) solver. The fuzzy control

scheme guides the increment in the relaxation factor by using

triangular membership functions, [10-11]. Depending on the

past solution entries, the CFD solver automatically adjusts

itself to exploit the best relaxation factor.

In 1995, Vapnik proposed a new approach for classification

and regression problems, named support vector machines,

[13]. This new approach aims at minimizing the structural

risk, i.e. the upper bound of the generalization error. By

this means, SVMs are superior to conventional NN, the

training algorithms of which minimize the empirical risk over

a set of training pairs, [14-15]. In [12], five hole pressure

probe calibration is studied comparatively with NN models

and it is seen that SVM predictions are much better than

those obtained with NN trained under the same operating

conditions. In the same paper, it is shown that utilizing

the SVMs, efficiency of the response surface technique can

be increased for CFD based shape optimizations. As the

test bed, diffusers converting the the dynamic pressure to

static pressure rise is chosen and response surface has been

constructed with the aid of SVM. In [16], Gretton et al.,

present a SVM based identification of a robot arm and the

regressor used in [16] has a similar structure as we use in

this paper.

As outlined above, some work has been done in the past

decade to explore the use of machine learning techniques in

flow modeling and control with various degrees of success.

Several of these works showed promising results but were

based on numerical simulations and lacked any experimental

validation of the concept. The few experimental studies

available are concerned with slowly varying states of the

flow. To the best of our knowledge, no attempt has been

made so far in using SVM to model a more dynamic, higher

frequency flow like the one over a cavity. Therefore, many

questions remain open about the merit and effectiveness

of the tools exploiting statistical learning theory in flow

modeling and control. Having this motivation in mind, in this

paper, we work on the experimental setup shown in Figs. 1-2

and introduced in the next section. The goal is to characterize

the flow passing over a cavity based on surface pressure

measurements. The third section summarizes the modeling

based on SVM. The obtained simulation results are discussed

in the fourth section, and conclusions constitute the last part

of the paper.

II. THE EXPERIMENTAL FACILITY

In this study, the experimental facility described in more

detail in [17-18] is used. The core of the experimental

setup consists of an optically accessible, blow-down type

wind tunnel with a test section of equal width and height,

W = H = 50.8 mm. A cavity that spans the entire width

of the test section is recessed in the floor with a depth

D = 12.7 mm and length L = 50.8 mm for an aspect ratio

L/D = 4. For control, the cavity shear-layer is forced by

a 2-D synthetic-jet type actuator issuing from the end slot

of a high-aspect-ratio converging nozzle embedded in the

cavity leading edge and spanning the width of the cavity,

see Fig. 2. Actuation is provided by the movement of the

titanium diaphragm of a Selenium D3300Ti compression

driver whose input signal is amplified by a Crown D-150A

amplifier. The pressure fluctuations are measured by Kulite

dynamic pressure transducers placed in different locations in

the test section, see Fig. 3.

Since the experimental facility enables us to acquire

pointwise observations from the critical locations of the

cavity, one could use this information for estimation of

the flow inside the cavity. This is done using a dSPACE

1103 DSP board connected to a Dell Precision Workstation

650. This system acquires the pressure transducer signals

simultaneously at a sampling frequency of 50 kHz through

16-bit input channels, and manipulates them to produce the

desired output signal from a 14-bit output channel. Each

recording is band-pass filtered between 200Hz and 10 kHz

to remove spurious frequency components. The simultaneous

time traces collected from these transducers have been used

to train the support vector network with the characteristics

described in [19-21]. It is critically important to emphasize

that the data must be spectrally rich enough to capture cases

that are likely to be encountered in real-time operation. This

makes sure that the NN responds appropriately to the input

variables.

In [18], it is observed that the cavity flow exhibits strong,

single-mode resonance in the Mach number ranges 0.25-0.31

and 0.39-0.5, and multi-mode resonance in the Mach number

range 0.32-0.38. In the same study, it is observed that the

frequency of sinusoidal forcing with the synthetic jet-like

actuator has a major impact on the cavity flow resonance

whereas the effect of the amplitude is relatively minor and

it affects the control authority only at higher Mach numbers.

This prompted the development of a logic-based type of

control that searches the forcing frequencies in a closed-loop

fashion that reduce the cavity flow resonant peaks and then

maintains the system in such conditions through an open-

loop control. The technique performed well in the experimen-

tal trials and allowed identification of optimal frequencies for

the reduction of resonant peaks in the Mach number range

0.25-0.5. Another indication of this result was the adequate

control authority introduced by the actuators. Some effort

within the described research has been dedicated to design

classical controllers and these succeeded to some extent. The

experience gained during these trials have stipulated that
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Fig. 1. A photograph of the cavity flow facility

Fig. 2. Cutout of the wind tunnel showing the converging nozzle, the test
section, the cavity, the actuator coupling, and the placement of a Kulite
transducer in the cavity floor

Fig. 3. The locations of the pressure transducers placed in the test section

the modeling of the process deserves particular attention

as the desired closed loop control performance depends

strictly upon the representational capability of the process

model. Since the experimental facility enables us to acquire

pointwise observations from the physically critical locations

of the cavity, one could use this information for identification

of the cavity flow and this paper discusses how SVMs could

be utilized for this purpose.

III. MODELING BY SUPPORT VECTOR MACHINES

A. SVM Basics

Consider the regression problem over the pairs

D = {(u1, d1), . . . , (uN , dN )}, ui ∈ R
m, d ∈ R (1)

with a function

f(u) = 〈w,u〉 + b (2)

where w and b denote the weight vector and the bias

value, respectively. 〈·, ·〉 stands for an appropriately defined

operator, which is an inner product for linear regression and

a kernel for nonlinear regression. Defining a quadratic loss

function as in (3) quantifies the performance for the ith pair,

L(di, f(ui)) = (di − f(ui))
2
. (3)

Minimizing the empirical risk given by (4) lets us obtain the

best values of wis causing least complexity represented by

||w||2;

R =
1
2
||w||2 + C

N∑
i=1

L(di, f(ui))2, (4)

where C is a parameter determining the relative importance

of the terms contributing to R, [14]. The primal form of the

optimization problem can be expressed compactly as

min
w,b

1
2
||w||2 + C

N∑
i=1

(ζ2
i + ζ̂2

i ) (5)

s.t.

⎧⎨
⎩

f(uj) − dj ≤ ζj ,

dj − f(uj) ≤ ζ̂j ,

ζj , ζ̂j ≥ 0
, j = 1, 2, . . . , N (6)

where ζj and ζ̂j are slack variables penalizing the deviations

from the target output. The above described problem can be

converted into a convex quadratic optimization problem by

writing the dual representation. The solution can be obtained

by introducing the Lagrange multipliers and performing the

following minimization for β ∈ R
N ;

min
β

1
2

N∑
i=1

N∑
j=1

βiβj〈ui,uj〉 −
N∑

i=1

βidi +
1

2C

N∑
i=1

β2
i , (7)

with constraint
∑N

i=1 βi = 0. It should be noted that the

support vectors are the uis for which the corresponding βi

is nonzero. The result of the minimization lets us obtain
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w∗ =
N∑

i=1

βiui, (8)

b∗ =
1
N

N∑
i=1

⎛
⎝yi −

N∑
j=1

〈ui,uj〉βj

⎞
⎠ (9)

which are to be used in (2). The nonlinear regression problem

is to replace the operator 〈·, ·〉 in (1) with a kernel function

satisfying the Mercer conditions, [15].

B. Application of SVM for Aerodynamic Flow Modeling

In the training phase, the SVM based model is asked

to realize the mapping from current state of the flow and

external excitation to the next state of the flow. The state of

the flow is described by the information acquired from the

chosen sensors. According to Figs. 2-3, the sensor labelled

S1 measures u1,k, the actuation signal at time k in Volts,

S2 measures u2,k, the pressure fluctuations just before the

actuator exit, S3 measures u3,k, the pressure fluctuation just

after the actuator exit (i.e. at the shear layer receptivity region

just downstream of the cavity leading edge), S4 measures

u4,k, the pressure fluctuations (if any) before the cavity, S5

measures u5,k, the pressure fluctuations at the cavity trailing

edge, S6 measures dk, the pressure fluctuations at the center

of the cavity floor. The signals from these transducers are

simultaneously sampled with the host computer.

With these definitions, a series-parallel SVM based emu-

lator is desired to match the training data in (1). It should be

noted that the input vector is composed of the information

coming from the above sensors and their delayed (past)

values, whose delay depths are specified by the designer.

Notice that the Mach number could also be an external input

to the SVM model to characterize the dynamical composition

of various experimental regimes within a single support

vector network. If such an approach succeeds, we obtain a

SVM emulator that can be used at Mach numbers around

Mach = 0.30 regime. Towards this goal, we have collected

a set of experimental data for several test cases as tabulated

in Table I.

TABLE I

DATA ACQUISITION CONDITIONS FOR TRAINING SET

Mach Number Excitation Frequency Excitation Magnitude

0.28 3250Hz 2.35Vrms
0.28 3920Hz 4.06Vrms
0.32 3250Hz 2.35Vrms
0.32 3920Hz 4.06Vrms

Every experiment shown above contributes only 126 sam-

ples to the training data set, which excludes Mach = 0.30

case. This is a deliberate choice for test data as Mach = 0.30

displays quite rich spectral view making the corresponding

phenomenon difficult to model compactly. The total number

of training samples is 504, which provides clearly very

limited information to perform a satisfactory modeling. One

might prefer to enlarge the training data set to cover a richer

set of cases yet the cost of this is a significant increase in

the training time.

At discrete time index k, the input vector to the SVM is

as given below

uk = (u1,k, u6,k, u6,k−1, u3,k, u5,k, Mach). (10)

The desired output for this input pattern is dk = u6,k+1.

In order to validate the modeling claim of the paper,

the mechanism in (1) is implemented with the discussed

SVM structure having 6 inputs, and one output. The train-

ing has been achieved by using the software available at

http://www.isis.ecs.soton.ac.uk, [14]. The rationale that lies

behind is the minimization of the discrepancy between the

process outputs and the SVM model response over a set of

input-output pairs while maintaining the minimal structural

risk. A linear kernel is utilized, i.e. kernelized value of uk

and ul is 〈uk, ul〉 = ukuT
l and the SVM model is obtained

approximately after a 2.3 hours of training process.

In Fig.4, the validation of the obtained SVM model is

shown for one of the unseen operating conditions (in terms

of Mach number), which correspond to the case described

by Mach = 0.30. In this figure, dk and xk denote the de-

sired (already recorded) value and prediction of SVM based

model xk+1 = f(uk), respectively. The obtained results are

reasonably good to claim that the model functions well for

the considered operating conditions. We can quantify this by

defining the relative error erel as the ratio of the average

powers of d and d − x over the time interval t ∈ [0, Tf ],
where Tf = 163.84 msec., that is

erel :=
1

Tf

∫ Tf

0
|d(t) − x(t)|2dt

1
Tf

∫ Tf

0
|d(t)|2dt

. (11)

The numerical results presented in Fig. 4, give erel =
0.0431, i.e. average power of the error signal d(t) − x(t)
is 4.31% of the average power of the signal d(t). Clearly

from (11), the smaller the erel the better the reconstruction

performance. To sum up, when looking at the result illus-

trated in Fig. 4, the similarity of the desired and estimated

signals is found to be promising.

Although the similarity in time domain is one way of

demonstrating the performance we need to check the spectral

views to strengthen the theoretical claims. In Fig. 5, we

demonstrate the Fast Fourier Transform (FFT) of the signals

involved in the procedure. The upper subplot depicts the

FFT magnitudes of d(t) and x(t) over the 200Hz-10kHz

band of the spectrum. Obtaining a similarity over this range

of frequencies is sufficient as the important information is

present in this band. The lower subplot illustrates the FFT

magnitude of the difference d(t) − x(t). The resonant peak

is visible in both subplots and the peak value in the lower

subplot, which is reasonably small, emphasizes that the phase

of the prediction reasonably fits the desired signal.

In Fig. 6, we zoom the behavior in the vicinity of the peak

at 3920Hz. The two FFT magnitude plots are very close
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Fig. 4. The time view of the signals and the error for Mach 0.3.
The excitation signal is a sinusoidal signal having frequency 3920Hz and
magnitude 4.06Vrms
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Fig. 5. Spectral view of the signals and the error for Mach 0.3. The
excitation signal is a sinusoidal signal having frequency 3920Hz and
magnitude 4.06Vrms

to each other, which stipulate that the SVM based model

performs well under the depicted operating conditions.

In Table II, we summarize the results for an extended set

of operating conditions including the one above. In each

case, we compute the relative error in (11) and the peak

value of the FFT magnitude of the error d(t) − x(t). We

consider Mach numbers 0.25, 0.28, 0.30, 0.32 and 0.35. For

each of these cases, we perform three sets of experiments.

First experiment set comprises the noise driven cases, i.e.

the actuator is excited by a noise signal within the allowed

physical limits of the actuator. The second set of experiments

provides data for the excitation by a sinusoidal signal having

frequency fexc = 3250Hz and amplitude Aexc = 2.35Vrms.

The cases in the third experiment set is similar to those in

the second one but with a sinusoidal signal having frequency

3920Hz and amplitude 4.06Vrms. In all these cases the

highest value of erel turns out to be less than 0.065.
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Fig. 6. Zoomed spectral view of the signals and the error for Mach 0.3.
The excitation signal is a sinusoidal signal having frequency 3920Hz and
magnitude 4.06Vrms

TABLE II

THE OPERATING CONDITIONS FOR VALIDATING THE SVM BASED

MODEL

Mach fexc Aexc erel sup |FFT(d − x)|
0.25 Noise Below sat. 0.048475 20.9356
0.28 Noise Below sat. 0.041880 44.7202
0.30 Noise Below sat. 0.045057 51.3371
0.32 Noise Below sat. 0.047126 44.6895
0.35 Noise Below sat. 0.054596 57.8424
0.25 3250 Hz. 2.35Vrms 0.042515 78.3571
0.25 3920 Hz. 4.06Vrms 0.044337 99.6471
0.28 3250 Hz. 2.35Vrms 0.039993 78.5551
0.28 3920 Hz. 4.06Vrms 0.047418 72.5547
0.30 3250 Hz. 2.35Vrms 0.051279 69.4989
0.30 3920 Hz. 4.06Vrms 0.043100 39.4168
0.32 3250 Hz. 2.35Vrms 0.056608 65.0521
0.32 3920 Hz. 4.06Vrms 0.054018 82.9277
0.35 3250 Hz. 2.35Vrms 0.058321 151.9084
0.35 3920 Hz. 4.06Vrms 0.064033 196.5640

Comparing the results given in the rightmost column of

Table II, one sees that the performance is satisfactory around

Mach = 0.30 and it gradually decreases as the Mach number

gets away from 0.30. This result is an expected as the flow

properties change dramatically as the Mach number changes

and the devised SVM model maintains its validity only

around Mach = 0.30.

A brief comparison of SVM based approach presented

here and that based on feedforward NNs differ significantly

in terms of the number of samples entering the modeling

procedure. SVM based models can be achieved with consid-

erably smaller number of data sets as their tuning is based

on the minimization of an upper bound on erors, while NNs

are configured to minimize the error based on a set of given

data. The reader is referred to [19], [20] for more details

about the issues on NN based flow modeling.
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IV. CONCLUSIONS

This paper focuses on the modeling issues for subsonic

cavity flows. An experimental setup has been constructed

for this purpose and the goal is to show that the surface

pressure readings could lead to a SVM based model for

predicting the behavior at the cavity floor. The results have

demonstrated that the goal is attainable with a simple SVM

structure admitting the Mach number as one of the input

variables. This makes it possible to utilize the SVM over a

range of regimes characterized by the Mach number. The

results obtained through the conducted research advances

the subject area to the development of models based on

statistical learning theory which can effectively describe

the flow dynamics. The very limited number of training

samples and the accuracy in extracting the features deserve

emphasis. Short term research goal aims to improve the

training time of SVM based models to incorporate more

input-output pairs into the regression problem while in the

long term, the authors aim at finding the best representative

model and best feedback controller closing the loop by

meeting the performance specifications admissibly.
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