82 research outputs found

    Paraffin-base oil transportation using pour-point depressants

    Get PDF

    Contribution of Ryanodine Receptors in Forming Presynaptic Ca<sup>2+</sup> Level and Cholinergic Modulation in Response to Single Potential in Frog Neuromuscular Junction

    Get PDF
    Β© 2016, Springer Science+Business Media New York.Ca2+ entering through voltage-gated Ca2+ channels plays a key role in the initiation of neurotransmitter secretion. However, intracellular Ca2+ storages such as endoplasmic reticulum (ER) can also contribute in the presynaptic Ca2+ level forming. Also ryanodine-dependent Ca2+-induced Ca2+ channels of endoplasmic reticulum may contribute in secretion inhibiting action of cholinomimetics. In this work, we use a photometric method for estimating the relative change in the level of presynaptic Ca2+ ions (Ca2+ transient). We have shown that during low-frequency stimulation Ca2+ release from the ER is involved in forming of presynaptic Ca2+ level. And more likely those effects of the cholinomimetics on Ca2+ transient are not related to Ca2+ release from the endoplasmic reticulum

    Calcium Transient and Quantal Release in Mouse Neuromuscular Junction Under Extracellular Calcium Concentration Change

    Get PDF
    Β© 2018, Springer Science+Business Media, LLC, part of Springer Nature. In mouse neuromuscular junction, the amplitude of the presynaptic calcium (Ca2+) transient was measured and correlated with mediator release at different extracellular Ca2+ concentrations. Fluorescent calcium-sensitive dye Oregon Green 488 BAPTA 1 hexapotassium salt was used for Ca2+ transient registration. The quantal content of release was assessed by the amplitude of the endplate potentials (EPPs) and was measured using intracellular microelectrodes. The amplitude of the EPPs changed more significantly than the amplitude of the Ca2+ transient when the extracellular calcium concentration was changed. Linear approximation of the dependence of the quantal content on the amplitude of the Ca2+ transient on double logarithmic scale gave a slope showing that the biochemical cooperativity was 2.86. The obtained value is comparable with the data calculated earlier in the neuromuscular junction of the rat and other synapses using electrophysiological measurements. Our data suggest that the change of the Ca2+ transients recorded from the whole volume of the nerve terminal properly reflects the variation of calcium concentration responsible for the neurotransmitter release in active zone. Thus, analysis of the bulk Ca2+ transient can be used to evaluate the calcium entry into the nerve endings and compare it with the number of quanta released under different conditions

    Polygonum schischkinii is a member of Atraphaxis (Polygonaceae, Polygoneae): evidences from morphological and molecular analyses

    Get PDF
    The Chinese endemic Polygonum schischkinii was studied from both morphological and molecular points of view. On the basis of the structure of ocreas and ocreolas, P. schischkinii appears to be a member of the genus Atraphaxis. The results of Maximum Likelihood and Bayesian analyses of combined data of the plastid [rpl32-trnL(UAG) IGS, trnL(UAA) intron, trnL-trnF IGS] and nuclear rDNA ITS1-2 regions, carried out on 61 members of tribe Polygoneae, confirmed position of P. schischkinii in the Atraphaxis clade. A new combination-Atraphaxis glareosa-based on P. glareosum, which has nomenclatural priority over P. schischkinii, is proposed. Ecological notes and a detailed distributional map of the species are also provided. Β© 2021 Magnolia Press. All rights reserved

    Loading a calcium dye into frog nerve endings through the nerve stump: Calcium transient registration in the frog neuromuscular junction

    Get PDF
    Β© 2017 Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. One of the most feasible methods of measuring presynaptic calcium levels in presynaptic nerve terminals is optical recording. It is based on using calcium-sensitive fluorescent dyes that change their emission intensity or wavelength depending on the concentration of free calcium in the cell. There are several methods used to stain cells with calcium dyes. Most common are the processes of loading the dyes through a micropipette or pre-incubating with the acetoxymethyl ester forms of the dyes. However, these methods are not quite applicable to neuromuscular junctions (NMJs) due to methodological issues that arise. In this article, we present a method for loading a calcium-sensitive dye through the frog nerve stump of the frog nerve into the nerve endings. Since entry of external calcium into nerve terminals and the subsequent binding to the calcium dye occur within the millisecond time-scale, it is necessary to use a fast imaging system to record these interactions. Here, we describe a protocol for recording the calcium transient with a fast CCD camera

    Action of ATP on Ca<sup>2+</sup>-Transient in Different Parts of the Frog Motor Nerve Ending

    Get PDF
    Β© 2016, Springer Science+Business Media New York.Electrophysiological evidence indicates a difference in neurotransmitter secretion along the motor nerve terminals of the frog neuromuscular junction. This includes a decrease of the minimal synaptic delay value and a reduction in the quantal content of the evoked endplate currents from the proximal to distal portion of the motor nerve ending. Besides, various physiologically active compounds may have different effects on the acetylcholine secretion in the proximal and distal parts of the nerve terminal. Here, we explored the effects of ATP on Ca2+-transient using optical detection methods with high-speed camera in different parts of the frog nerve terminal. There was shown a significant inhibitory effect of ATP on Ca2+-transient in both the proximal and distal regions of nerve terminals. However, in different parts of nerve endings, any significant differences in ATP effects were not found. Thus, ATP decreases the Ca2+-transient along the entire presynaptic terminal

    Calcium Transient Registration in Response to Single Stimulation and During Train of Pulses in Mouse Neuromuscular Junction

    Get PDF
    Β© 2016, Springer Science+Business Media New York.Calcium (Ca2+) is a key ion involved in transmitter release in chemical synapses. Optical recording of fluorescence changes of Ca2+ indicators is one of the most frequently used methods to measure intracellular Ca2+ dynamics. This technique is based on use of Ca2+-binding fluorescent dyes which change their emission intensity after binding to Ca2+. The most crucial step in this type of experiments is loading of Ca2+ dye. In this paper, we present the method of Ca2+-sensitive dye loading to mammalian nerve endings through the stump of the nerve. We represent Ca2+ transient registered parameters in response to a single motor nerve stimulus. The study of Ca2+ dynamics during high frequency stimulation close to real pattern of synaptic transmission allows us to understand such fundamental process as synaptic plasticity. We describe the results obtained during the registration of Ca2+ transient caused by the rhythmic motor nerve stimulation. Intracellular level of Ca2+ estimated by the amplitude of Ca2+ transient rises with the increase of stimulation frequency. The amplitude of Ca2+ transient decreases after blocking of voltage dependent Ca2+ channels by cadmium. The obtained data showed that detected increase of fluorescence intensity is induced by Ca2+ influx through the voltage-gated Ca2+ channels to the nerve ending during an action potential. This dye-loading method is suitable for registration of presynaptic Ca2+ dynamics under both single nerve stimulus and rhythmic activity

    Calcium modulation of the kinetics of evoked quantum secretion in neuromuscular synapses of cold- and warm-blooded animals

    Get PDF
    Β© 2015, Pleiades Publishing, Ltd. Calcium entry into the nerve endings through voltage-dependent calcium channels triggers a chain of events leading to exocytosis of neurotransmitter, providing the transmission of excitation through the synapse. In this regard, a significant role of calcium ions and presynaptic calcium channels in the modulation of secretion is evident. However, the question of the contribution of different types of voltage-dependent calcium channels in the calcium regulation parameters of the quantal secretion still remains unclear. The secretion kinetics characterizes a degree of synchrony of the neurotransmitter release. In recent decades it is regarded as one of the important factors maintaining the effectiveness of the synaptic transmission. Since neuromuscular synapses of frogs and mice are classical objects of physiological and pharmacological studies, the results of which are summarized and extrapolated to other synapses, it is interesting to compare changes of the acetylcholine secretion in these synapses under different conditions of calcium entry into the nerve endings. In this review we discuss the data on the neuromuscular synapses of frogs and mice and analyze some aspects of calcium regulation and involvement of different types of voltage-dependent calcium channels in the modulation of the acetylcholine secretion kinetics

    Kinetics of neurotransmitter release in neuromuscular synapses of newborn and adult rats

    Get PDF
    The kinetics of the phasic synchronous and delayed asynchronous release of acetylcholine quanta was studied at the neuromuscular junctions of aging rats from infant to mature animals at various frequencies of rhythmic stimulation of the motor nerve. We found that in infants 6 (P6) and 10 (P10) days after birth a strongly asynchronous phase of quantal release was observed, along with a reduced number of quanta compared to the synapses of adults. The rise time and decay of uni-quantal end-plate currents were significantly longer in infant synapses. The presynaptic immunostaining revealed that the area of the synapses in infants was significantly (up to six times) smaller than in mature junctions. The intensity of delayed asynchronous release in infants increased with the frequency of stimulation more than in adults. A blockade of the ryanodine receptors, which can contribute to the formation of delayed asynchronous release, had no effect on the kinetics of delayed secretion in the infants unlike synapses of adults. Therefore, high degree of asynchrony of quantal release in infants is not associated with the activity of ryanodine receptors and with the liberation of calcium ions from intracellular calcium stores. Β© 2014 ISDN

    Synaptosome-associated protein 25 (SNAP25) synthesis in terminal buttons of mouse motor neuron

    Get PDF
    Β© 2015, Pleiades Publishing, Ltd. Previously, we formulated the hypothesis of compartmentalized protein synthesis in axons of motor neurons. In the axon hillock, along the entire length of the axon and in its ending, specific proteins are locally synthesized, which ensure the function of each compartment. In support of this hypothesis, in this work we studied the local protein synthesis in mouse motor nerve ending
    • …
    corecore