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Abstract

© 2016, Springer Science+Business Media New York.Calcium (Ca2+) is a key ion involved in
transmitter release in chemical synapses. Optical recording of fluorescence changes of Ca2+
indicators is one of the most frequently used methods to measure intracellular Ca2+ dynamics.
This technique is based on use of Ca2+-binding fluorescent dyes which change their emission
intensity after binding to Ca2+. The most crucial step in this type of experiments is loading of
Ca2+ dye. In this paper, we present the method of Ca2+-sensitive dye loading to mammalian
nerve  endings  through  the  stump  of  the  nerve.  We  represent  Ca2+ transient  registered
parameters in response to a single motor nerve stimulus. The study of Ca2+ dynamics during
high  frequency  stimulation  close  to  real  pattern  of  synaptic  transmission  allows  us  to
understand such fundamental process as synaptic plasticity. We describe the results obtained
during the registration of Ca2+ transient caused by the rhythmic motor nerve stimulation.
Intracellular level of Ca2+ estimated by the amplitude of Ca2+ transient rises with the increase
of stimulation frequency. The amplitude of Ca2+ transient decreases after blocking of voltage
dependent Ca2+ channels by cadmium. The obtained data showed that detected increase of
fluorescence intensity is induced by Ca2+ influx through the voltage-gated Ca2+ channels to
the nerve ending during an action potential. This dye-loading method is suitable for registration
of presynaptic Ca2+ dynamics under both single nerve stimulus and rhythmic activity.
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