114 research outputs found

    In search of genetic diversity in Rosa foetida Hermann in Iran

    Get PDF
    Rosa foetida is a dense, erect shrub with bright yellow or scarlet flowers with a yellowish reverse petal. It is most abundant in South West Asia. In Iran R. foetida occurs mainly in the mountainous North and West regions. The species is the origin of the strong yellow color in hybrid roses, which was introduced into modern cultivars in 1900 through a single species hybridization event. In this study we have used 10 microsatellite markers to determine diversity in Rosa foetida accessions collected across Iran. To our surprise, nearly all samples collected were of the same genotype, even when collected at different sites. Only four different genotypes have been detected in total. The results are discussed in relation to breeding system, human influence and overall gene pool statu

    Correlation between Pathologic Complete Response in the Breast and Absence of Axillary Lymph Node Metastases after Neoadjuvant Systemic Therapy

    Get PDF
    Objective:The aim was to investigate whether pathologic complete response (PCR) in the breast is correlated with absence of axillary lymph node metastases at final pathology (ypN0) in patients treated with neoadjuvant systemic therapy (NST) for different breast cancer subtypes.Background:Pathologic complete response rates have improved on account of more effective systemic treatment regimens. Promising results in feasibility trials with percutaneous image-guided tissue sampling for the identification of breast PCR after NST raise the question whether breast surgery is a redundant procedure. Thereby, the need for axillary surgery should be reconsidered as well.Methods:Patients diagnosed with cT1-3N0-1 breast cancer and treated with NST, followed by surgery between 2010 and 2016, were selected from the Netherlands Cancer Registry. Patients were compared according to the pa

    The Nab Experiment: A Precision Measurement of Unpolarized Neutron Beta Decay

    Get PDF
    Neutron beta decay is one of the most fundamental processes in nuclear physics and provides sensitive means to uncover the details of the weak interaction. Neutron beta decay can evaluate the ratio of axial-vector to vector coupling constants in the standard model, λ=gA/gV\lambda = g_A / g_V, through multiple decay correlations. The Nab experiment will carry out measurements of the electron-neutrino correlation parameter aa with a precision of δa/a=10−3\delta a / a = 10^{-3} and the Fierz interference term bb to δb=3×10−3\delta b = 3\times10^{-3} in unpolarized free neutron beta decay. These results, along with a more precise measurement of the neutron lifetime, aim to deliver an independent determination of the ratio λ\lambda with a precision of δλ/λ=0.03%\delta \lambda / \lambda = 0.03\% that will allow an evaluation of VudV_{ud} and sensitively test CKM unitarity, independent of nuclear models. Nab utilizes a novel, long asymmetric spectrometer that guides the decay electron and proton to two large area silicon detectors in order to precisely determine the electron energy and an estimation of the proton momentum from the proton time of flight. The Nab spectrometer is being commissioned at the Fundamental Neutron Physics Beamline at the Spallation Neutron Source at Oak Ridge National Lab. We present an overview of the Nab experiment and recent updates on the spectrometer, analysis, and systematic effects.Comment: Presented at PPNS201

    Pre-formulation and systematic evaluation of amino acid assisted permeability of insulin across in vitro buccal cell layers

    Get PDF
    The aim of this work was to investigate alternative safe and effective permeation enhancers for buccal peptide delivery. Basic amino acids improved insulin solubility in water while 200 and 400 µg/mL lysine significantly increased insulin solubility in HBSS. Permeability data showed a significant improvement in insulin permeation especially for 10 µg/mL of lysine (p < 0.05) and 10 µg/mL histidine (p < 0.001), 100 µg/mL of glutamic acid (p < 0.05) and 200 µg/mL of glutamic acid and aspartic acid (p < 0.001) without affecting cell integrity; in contrast to sodium deoxycholate which enhanced insulin permeability but was toxic to the cells. It was hypothesized that both amino acids and insulin were ionised at buccal cavity pH and able to form stable ion pairs which penetrated the cells as one entity; while possibly triggering amino acid nutrient transporters on cell surfaces. Evidence of these transport mechanisms was seen with reduction of insulin transport at suboptimal temperatures as well as with basal-to-apical vectoral transport, and confocal imaging of transcellular insulin transport. These results obtained for insulin is the first indication of a possible amino acid mediated transport of insulin via formation of insulin-amino acid neutral complexes by the ion pairing mechanism

    Characterisation of sugar beet (Beta vulgaris L. ssp. vulgaris) varieties using microsatellite markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sugar beet is an obligate outcrossing species. Varieties consist of mixtures of plants from various parental combinations. As the number of informative morphological characteristics is limited, this leads to some problems in variety registration research.</p> <p>Results</p> <p>We have developed 25 new microsatellite markers for sugar beet. A selection of 12 markers with high quality patterns was used to characterise 40 diploid and triploid varieties. For each variety 30 individual plants were genotyped. The markers amplified 3-21 different alleles. Varieties had up to 7 different alleles at one marker locus. All varieties could be distinguished. For the diploid varieties, the expected heterozygosity ranged from 0.458 to 0.744. The average inbreeding coefficient F<sub>is </sub>was 0.282 ± 0.124, but it varied widely among marker loci, from F<sub>is </sub>= +0.876 (heterozygote deficiency) to F<sub>is </sub>= -0.350 (excess of heterozygotes). The genetic differentiation among diploid varieties was relatively constant among markers (F<sub>st </sub>= 0.232 ± 0.027). Among triploid varieties the genetic differentiation was much lower (F<sub>st </sub>= 0.100 ± 0.010). The overall genetic differentiation between diploid and triploid varieties was F<sub>st </sub>= 0.133 across all loci. Part of this differentiation may coincide with the differentiation among breeders' gene pools, which was F<sub>st </sub>= 0.063.</p> <p>Conclusions</p> <p>Based on a combination of scores for individual plants all varieties can be distinguished using the 12 markers developed here. The markers may also be used for mapping and in molecular breeding. In addition, they may be employed in studying gene flow from crop to wild populations.</p

    An Epigenetic Blockade of Cognitive Functions in the Neurodegenerating Brain

    Get PDF
    Cognitive decline is a debilitating feature of most neurodegenerative diseases of the central nervous system, including Alzheimer’s disease. The causes leading to such impairment are only poorly understood and effective treatments are slow to emerge. Here we show that cognitive capacities in the neurodegenerating brain are constrained by an epigenetic blockade of gene transcription that is potentially reversible. This blockade is mediated by histone deacetylase 2, which is increased by Alzheimer’s-disease-related neurotoxic insults in vitro, in two mouse models of neurodegeneration and in patients with Alzheimer’s disease. Histone deacetylase 2 associates with and reduces the histone acetylation of genes important for learning and memory, which show a concomitant decrease in expression. Importantly, reversing the build-up of histone deacetylase 2 by short-hairpin-RNA-mediated knockdown unlocks the repression of these genes, reinstates structural and synaptic plasticity, and abolishes neurodegeneration-associated memory impairments. These findings advocate for the development of selective inhibitors of histone deacetylase 2 and suggest that cognitive capacities following neurodegeneration are not entirely lost, but merely impaired by this epigenetic blockade

    Alleviating the salt stress effects in Salvia splendens by humic acid application

    No full text
    Salinity stress is a serious problem in urban landscape of arid and semi arid regions. To overcome the adverse impact of salinity, the application of organic matter and plant nutrients in the growth media for improving the plant growth is essential. An experiment was conducted in order to determine the response of Salvia splendens to salinity levels and also the role of humic acid in the salt stress alleviation. In the current experiment, five salinity levels (0, 20, 40, 60, and 80 mM NaCl) and three humic acid (0, 100, 500 and 1000 mg/l) treatments were prepared. The effects of these treatments were investigated on some growth parameters, physiological characteristics and also biochemical compounds. The results indicated that the growth parameters decreased in saline-treated than control plants. Different salinity levels significantly affected relative water content, evaporation rate and also electrolyte leakage. Salinity caused the increase in proline, malondialdehyde, sugar content, DPPH, total phenol content and decrease in chlorophyll, compare to the control plants. Application of humic acid on Salvia splendens decreased the leaf area and plant height compared to the control plants. Thus, regarding the growth parameters, it is probable that the effect of humic acid on the biochemical compounds is similar to salinity effect. The findings suggest that sage is an ornamental plant sensitive to salinity and humic acid (in the studied levels) could not alleviate the negative effects of salt stress on this plant
    • …
    corecore