346 research outputs found

    Insights into the roles of local translation from the axonal transcriptome

    Get PDF
    Much of our knowledge on the roles of intra-axonal translation derives from the characterization of a small number of individual mRNAs that were found to be localized in axons. However, two recent studies, using large-scale approaches to provide a more comprehensive characterization of the axonal transcriptome, have led to the discovery of thousands of axonal mRNAs. The apparent abundance of mRNAs in axons raises the possibility that local translation has many more functions than previously thought. Here, we review the recent studies that have profiled axonal mRNAs and discuss how the identification of axonal transcripts might point to unappreciated roles for local translation in axons

    Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3′ UTRs and near Stop Codons

    Get PDF
    SummaryMethylation of the N6 position of adenosine (m6A) is a posttranscriptional modification of RNA with poorly understood prevalence and physiological relevance. The recent discovery that FTO, an obesity risk gene, encodes an m6A demethylase implicates m6A as an important regulator of physiological processes. Here, we present a method for transcriptome-wide m6A localization, which combines m6A-specific methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-Seq). We use this method to identify mRNAs of 7,676 mammalian genes that contain m6A, indicating that m6A is a common base modification of mRNA. The m6A modification exhibits tissue-specific regulation and is markedly increased throughout brain development. We find that m6A sites are enriched near stop codons and in 3′ UTRs, and we uncover an association between m6A residues and microRNA-binding sites within 3′ UTRs. These findings provide a resource for identifying transcripts that are substrates for adenosine methylation and reveal insights into the epigenetic regulation of the mammalian transcriptome

    Anaemia among clinically well under-fives attending a community health centre in Venda, Limpopo Province

    Get PDF
    Background. Anaemia has been reported to affect 20 - 75% of children in South Africa. The range suggests the effects that geography, health, and socio-economic status can have on the observed prevalence of anaemia within a specific community. Our objective was to investigate the prevalence of anaemia in children aged under 5 presenting for well-child examinations at a community health centre in Thohoyandou, Limpopo Province. Design. A cross-sectional observational study was carried out in June and July 2007. Caregivers participated in a brief interview where demographic, health and nutritional information was collected. A blood sample was collected from each child, and haemoglobin levels were assessed with a point-of-care haemoglobin testing system. Anaemia was defined as having a haemoglobin valu

    Efficient framework for brain tumor detection using different deep learning techniques

    Get PDF
    The brain tumor is an urgent malignancy caused by unregulated cell division. Tumors are classified using a biopsy, which is normally performed after the final brain surgery. Deep learning technology advancements have assisted the health professionals in medical imaging for the medical diagnosis of several symptoms. In this paper, transfer-learning-based models in addition to a Convolutional Neural Network (CNN) called BRAIN-TUMOR-net trained from scratch are introduced to classify brain magnetic resonance images into tumor or normal cases. A comparison between the pre-trained InceptionResNetv2, Inceptionv3, and ResNet50 models and the proposed BRAIN-TUMOR-net is introduced. The performance of the proposed model is tested on three publicly available Magnetic Resonance Imaging (MRI) datasets. The simulation results show that the BRAIN-TUMOR-net achieves the highest accuracy compared to other models. It achieves 100%, 97%, and 84.78% accuracy levels for three different MRI datasets. In addition, the k-fold cross-validation technique is used to allow robust classification. Moreover, three different unsupervised clustering techniques are utilized for segmentation

    Tuning water chemistry for the recovery of greener products: pragmatic and sustainable approaches

    Get PDF
    This research article was published on 17 February,2023 and its available on nm-aist institutional repositoryThe early techniques for recovery of bioactive metabolites involve conventional cold or hot solvent extraction.1 The choice is a function of the nature of the bioactive compound of interest.2 The adverse effect of organic solvents (Table 1) which are mostly preferred extraction techniques has warranted the search for greener alternatives. One of the ways green extrac tions is described involves the isolation of medicinally active portions from a bio-material,3 with the simultaneous use of eco friendly solvents and optimal use of energy.4–9 Prospecting for green solvents has brought water to the fore of extraction technology.10 Water is affirmatively described as the “greenest solvent” imaginable, with its availability at the required purity, it is cost-effective, readily recycled, non-toxic, non-ammable, and eco-friendly.10–13 Based on the green chemistry precept, water is considered a green chemical per excellence.14–16 Water is useful in the recovery of various phytochemicals including alcohols, sugars, proteins, and organic acids with natural water soluble properties.12,16–21 However, water as a solvent has some physical and chemical property disadvantages when compared to organic solvent.21–23 The polar nature of water in its natural form reduces its efficacy and acceptability when compared with organic solvents for some kinds of extractions. Organic solvents are extensively desirable since they exhibit better recovery than water at ambient conditions.3 Further setbacks experienced when using conventional hydro-extraction include time and energy consumption, thermal decomposition of thermo sensitive metabolites and low recovery of hydro-solvent in its natural form. There exists the need to investigate water properties that can be improved to complement its natural advantage and eradicate its attendant limitations as a solvent for extraction.5,8,10,28,29 have indicated that improving traditional extraction must entail decreased energy input, sustainability and a non-toxic nal product. Improving water to own variable chemistry will aid the extraction of a broad range of polar and non-polar biomolecules from sustainable natural products with non-toxic quality and eco-friendliness.10,21,29 This approach will prevent the use of organic solvents, fossil energy, chemical waste and risks of extraction. It is known that water existing in its tunable form satises the conditions of green solvents.11–13 Recently, th

    Heavy Metals Can either Aid or Oppose the Protective Function of the Placental Barrier

    Get PDF
    BACKGROUND: In developing countries, toxic heavy metals are a threatening catastrophe to human health, particularly in the vulnerable group of pregnant mothers and their fetuses. Fortunately, the placenta can be a protective barrier to the fetuses. AIM: To explore the relationship between serum lead, cadmium and arsenic levels in pregnant mothers and their newborns, to address the placental barrier in this situation. METHODS: A cross-sectional study was conducted on 100 pregnant mothers at the time of labour and their newborns. Serum cadmium, lead, and arsenic levels were measured using the Inductively Coupled Plasma Mass Spectrometry. RESULTS: All the studied heavy metals concentrations showed a significant elevation in the maternal blood relative to the cord blood. There was a significant association between the maternal lead and both fetal lead and arsenic. Meanwhile, a negative but insignificant correlation was recorded between the maternal cadmium and each of the fetal cadmium, lead, and arsenic. CONCLUSION: The study findings indicated a weak relation between maternal and fetal blood heavy metals, except for the influence of maternal lead, so it can be assumed that the placental barriers are partially protective against those toxic pollutants, putting into consideration the influence of their different natures

    SABRE: A bio-inspired fault-tolerant electronic architecture

    Get PDF
    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance. © 2013 IOP Publishing Ltd

    Evolving Landscape of Carbapenem-Resistant

    Get PDF
    OBJECTIVES: The increased identification of carbapenem-resistant METHODS: A total of 169 CR-PA isolated from clinical specimens at a single centre in Houston, TX, USA were studied. Among them, 61 isolates collected between 1999 and 2005 were defined as historical strains, and 108 collected between 2017 and 2018 were defined as contemporary strains. Antimicrobial susceptibilities against selected β-lactams was determined. WGS data were used for the identification of antimicrobial resistance determinants and phylogenetic analysis. RESULTS: Non-susceptibility to ceftolozane/tazobactam and ceftazidime/avibactam increased from 2% (1/59) to 17% (18/108) and from 7% (4/59) to 17% (18/108) from the historical to the contemporary collection, respectively. Carbapenemase genes, which were not identified in the historical collection, were harboured by 4.6% (5/108) of the contemporary strains, and the prevalence of ESBL genes also increased from 3.3% (2/61) to 16% (17/108). Genes encoding acquired β-lactamases were largely confined to the high-risk clones. Among ceftolozane/tazobactam-resistant isolates, non-susceptibility to ceftazidime/avibactam, imipenem/relebactam and cefiderocol was observed in 94% (15/16), 56% (9/16) and 12.5% (2/16), respectively. Resistance to ceftolozane/tazobactam and imipenem/relebactam was primarily associated with the presence of exogenous β-lactamases. CONCLUSIONS: Acquisition of exogenous carbapenemases and ESBLs may be a worrisome trend i
    corecore