4,442 research outputs found

    Constraining f(R)f(R) gravity models with disappearing cosmological constant

    Full text link
    The f(R)f(R) gravity models proposed by Hu-Sawicki and Starobinsky are generic for local gravity constraints to be evaded. The large deviations from these models either result into violation of local gravity constraints or the modifications are not distinguishable from cosmological constant. The curvature singularity in these models is generic but can be avoided provided that proper fine tuning is imposed on the evolution of scalaron in the high curvature regime. In principle, the problem can be circumvented by incorporating quadratic curvature correction in the Lagrangian though it might be quite challenging to probe the relevant region numerically.Comment: 9 pages and 4 figures, minor clarifications and corrections added, final version to appear in PR

    Galileon gravity and its relevance to late time cosmic acceleration

    Full text link
    We consider the covariant galileon gravity taking into account the third order and fourth order scalar field Lagrangians L_3(\pi) and L_4(\pi) consisting of three and four π\pi's with four and five derivatives acting on them respectively. The background dynamical equations are set up for the system under consideration and the stability of the self accelerating solution is demonstrated in general setting. We extended this study to the general case of the fifth order theory. For spherically symmetric static background, we spell out conditions for suppression of fifth force effects mediated by the galileon field π\pi. We study the field perturbations in the fixed background and investigate conditions for their causal propagation. We also briefly discuss metric fluctuations and derive evolution equation for matter perturbations in galileon gravity.Comment: 11 pages, no figure, minor clarifications and few refs added, to appear in pr

    Observational constraints on braneworld inflation: the effect of a Gauss-Bonnet term

    Get PDF
    High-energy modifications to general relativity introduce changes to the perturbations generated during inflation, and the latest high-precision cosmological data can be used to place constraints on such modified inflation models. Recently it was shown that Randall-Sundrum type braneworld inflation leads to tighter constraints on quadratic and quartic potentials than in general relativity. We investigate how this changes with a Gauss-Bonnet correction term, which can be motivated by string theory. Randall-Sundrum models preserve the standard consistency relation between the tensor spectral index and the tensor-to-scalar ratio. The Gauss-Bonnet term breaks this relation, and also modifies the dynamics and perturbation amplitudes at high energies. We find that the Gauss-Bonnet term tends to soften the Randall-Sundrum constraints. The observational compatibility of the quadratic potential is strongly improved. For a broad range of energy scales, the quartic potential is rescued from marginal rejection. Steep inflation driven by an exponential potential is excluded in the Randall-Sundrum case, but the Gauss-Bonnet term leads to marginal compatibility for sufficient e-folds.Comment: 10 pages, 10 figures, version to appear in Physical Review

    Işıksız ve fikirsiz geçen yıldönümleri

    Get PDF
    Taha Toros Arşivi, Dosya No: 36-Ziya Gökalpİstanbul Kalkınma Ajansı (TR10/14/YEN/0033) İstanbul Development Agency (TR10/14/YEN/0033)Ziya Gökalp ve milli sosyoloji davamızII Ziya Gökalp ve Mehmet İzzet (1)III. Ziya Gökalp hakkında bibliyoğrafyalar ve eserlere geçmemiş bazı zikzaklı düşünceler ve inişli çıkışlı telekkiler

    Avoidance of future singularities in loop quantum cosmology

    Get PDF
    We consider the fate of future singularities in the effective dynamics of loop quantum cosmology. Non-perturbative quantum geometric effects which lead to ρ2\rho^2 modification of the Friedmann equation at high energies result in generic resolution of singularities whenever energy density ρ\rho diverges at future singularities of Friedmann dynamics. Such quantum effects lead to the avoidance of a Big Rip, which is followed by a recollapsing universe stable against perturbations. Resolution of sudden singularity, the case when pressure diverges but energy density approaches a finite value depends on the ratio of the latter to a critical energy density of the order of Planck. If the value of this ratio is greater than unity, the universe escapes the sudden future singularity and becomes oscillatory.Comment: 6 pages, 2 figure

    Proposal for an experiment to search for Randall-Sundrum type corrections to Newton's law of gravitation

    Full text link
    String theory, as well as the string inspired brane-world models such as the Randall-Sundrum (RS) one, suggest a modification of Newton's law of gravitation at small distance scales. Search for modifications of standard gravity is an active field of research in this context. It is well known that short range corrections to gravity would violate the Newton-Birkhoff theorem. Based on calculations of RS type non-Newtonian forces for finite size spherical bodies, we propose a torsion balance based experiment to search for the effects of violation of this celebrated theorem valid in Newtonian gravity as well as the general theory of relativity. We explain the main principle behind the experiment and provide detailed calculations suggesting optimum values of the parameters of the experiment. The projected sensitivity is sufficient to probe the Randall-Sundrum parameter up to 10 microns.Comment: 4 pages and 5 figures, figures improved, minor clarifications and few references added, final version to appear in PRD (rapid communications
    corecore