290 research outputs found

    Crystal structure of the left-handed archaeal RadA helical filament: identification of a functional motif for controlling quaternary structures and enzymatic functions of RecA family proteins

    Get PDF
    The RecA family of proteins mediates homologous recombination, an evolutionarily conserved pathway that maintains genomic stability by protecting against DNA double strand breaks. RecA proteins are thought to facilitate DNA strand exchange reactions as closed-rings or as right-handed helical filaments. Here, we report the crystal structure of a left-handed Sulfolobus solfataricus RadA helical filament. Each protomer in this left-handed filament is linked to its neighbour via interactions of a β-strand polymerization motif with the neighbouring ATPase domain. Immediately following the polymerization motif, we identified an evolutionarily conserved hinge region (a subunit rotation motif) in which a 360° clockwise axial rotation accompanies stepwise structural transitions from a closed ring to the AMP–PNP right-handed filament, then to an overwound right-handed filament and finally to the left-handed filament. Additional structural and functional analyses of wild-type and mutant proteins confirmed that the subunit rotation motif is crucial for enzymatic functions of RecA family proteins. These observations support the hypothesis that RecA family protein filaments may function as rotary motors

    Optimization of fixation methods for observation of bacterial cell morphology and surface ultrastructures by atomic force microscopy

    Get PDF
    Fixation ability of five common fixation solutions, including 2.5% glutaraldehyde, 10% formalin, 4% paraformaldehyde, methanol/acetone (1:1), and ethanol/acetic acid (3:1) were evaluated by using atomic force microscopy in the present study. Three model bacteria, i.e., Escherichia coli, Pseudomonas putida, and Bacillus subtilis were applied to observe the above fixation methods for the morphology preservation of bacterial cells and surface ultrastructures. All the fixation methods could effectively preserve cell morphology. However, for preserving bacterial surface ultrastructures, the methods applying aldehyde fixations performed much better than those using alcohols, since the alcohols could detach the surface filaments (i.e., flagella and pili) significantly. Based on the quantitative and qualitative assessments, the 2.5% glutaraldehyde was proposed as a promising fixation solution both for observing morphology of both bacterial cell and surface ultrastructures, while the methonal/acetone mixture was the worst fixation solution which may obtain unreliable results

    A chain mechanism for flagellum growth.

    Get PDF
    Bacteria swim by means of long flagella extending from the cell surface. These are assembled from thousands of protein subunits translocated across the cell membrane by an export machinery at the base of each flagellum. Unfolded subunits then transit through a narrow channel at the core of the growing flagellum to the tip, where they crystallize into the nascent structure. As the flagellum lengthens outside the cell, the rate of flagellum growth does not change. The mystery is how subunit transit is maintained at a constant rate without a discernible energy source in the channel of the external flagellum. We present evidence for a simple physical mechanism for flagellum growth that harnesses the entropic force of the unfolded subunits themselves. We show that a subunit docked at the export machinery can be captured by a free subunit through head-to-tail linkage of juxtaposed amino (N)- and carboxy (C)-terminal helices. We propose that sequential rounds of linkage would generate a multisubunit chain that pulls successive subunits into and through the channel to the flagellum tip, and by isolating filaments growing on bacterial cells we reveal the predicted chain of head-to-tail linked subunits in the transit channel of flagella. Thermodynamic analysis confirms that links in the subunit chain can withstand the pulling force generated by rounds of subunit crystallization at the flagellum tip, and polymer theory predicts that as the N terminus of each unfolded subunit crystallizes, the entropic force at the subunit C terminus would increase, rapidly overcoming the threshold required to pull the next subunit from the export machinery. This pulling force would adjust automatically over the increasing length of the growing flagellum, maintaining a constant rate of subunit delivery to the tip

    Lighting Up Clostridium Difficile: Reporting Gene Expression Using Fluorescent Lov Domains

    Get PDF
    The uses of fluorescent reporters derived from green fluorescent protein have proved invaluable for the visualisation of biological processes in bacteria grown under aerobic conditions. However, their requirement for oxygen has limited their application in obligate anaerobes such as Clostridium difficile. Fluorescent proteins derived from Light, Oxygen or Voltage sensing (LOV) domains have been shown to bridge this limitation, but their utility as translational fusions to monitor protein expression and localisation in a strict anaerobic bacterium has not been reported. Here we demonstrate the utility of phiLOV in three species of Clostridium and its application as a marker of real-time protein translation and dynamics through genetic fusion with the cell division protein, FtsZ. Time lapse microscopy of dividing cells suggests that Z ring assembly arises through the extension of the FtsZ arc starting from one point on the circumference. Furthermore, through incorporation of phiLOV into the flagella subunit, FliC, we show the potential of bacterial LOV-based fusion proteins to be successfully exported to the extracellular environment

    The structure of the flagellar hook junction protein HAP1 (FlgK) from Campylobacter jejuni

    No full text

    Crystal structure of the cytoplasmic domain of FlhB from Aquifex aeolicus

    No full text

    Crystal structure of a 79KDa fragment of FlgE, the hook protein from Campylobacter jejuni

    No full text

    Crystal structure of cytoplasmic domain of FlhB from Salmonella typhimurium

    No full text

    Cryo-EM structure of the flagellar hook of Campylobacter jejuni

    No full text
    corecore