309 research outputs found

    Comparative in silico analysis identifies bona fide MyoD binding sites within the Myocyte Stress 1 gene promoter

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myocyte stress 1 (MS1) is a striated muscle actin binding protein required for the muscle specific activity of the evolutionary ancient myocardin related transcription factor (MRTF)/serum response factor (SRF) transcriptional pathway. To date, little is known about the molecular mechanisms that govern skeletal muscle specific expression of MS1. Such mechanisms are likely to play a major role in modulating SRF activity and therefore muscle determination, differentiation and regeneration. In this study we employed a comparative <it>in silico </it>analysis coupled with an experimental promoter characterisation to delineate these mechanisms.</p> <p>Results</p> <p>Analysis of MS1 expression in differentiating C2C12 muscle cells demonstrated a temporal differentiation dependent up-regulation in <it>ms1 </it>mRNA. An <it>in silico </it>comparative sequence analysis identified two conserved putative myogenic regulatory domains within the proximal 1.5 kbp of 5' upstream sequence. Co-transfecting C2C12 myoblasts with <it>ms1 </it>promoter/luciferase reporters and myogenic regulatory factor (MRF) over-expression plasmids revealed specific sensitivity of the <it>ms1 </it>promoter to MyoD. Subsequent mutagenesis and EMSA analysis demonstrated specific targeting of MyoD at two distinct E-Boxes (E1 and E2) within identified evolutionary conserved regions (ECRs, α and β). Chromatin immunoprecipitation (ChIP) analysis indicates that co-ordinated binding of MyoD at E-Boxes located within ECRs α and β correlates with the temporal induction in <it>ms1 </it>mRNA.</p> <p>Conclusion</p> <p>These findings suggest that the tissue specific and differentiation dependent up-regulation in <it>ms1 </it>mRNA is mediated by temporal binding of MyoD at distinct evolutionary conserved E-Boxes within the <it>ms1 </it>5' upstream sequence. We believe, through its activation of <it>ms1</it>, this is the first study to demonstrate a direct link between MyoD activity and SRF transcriptional signalling, with clear implications for the understanding of muscle determination, differentiation and regeneration.</p

    Effects of size at birth, childhood growth patterns and growth hormone treatment on leukocyte telomere length

    Get PDF
    __Background__ Small size at birth and rapid growth in early life are associated with increased risk of cardiovascular disease in later life. Short children born small for gestational age (SGA) are treated with growth hormone (GH), inducing catch-up in length. Leukocyte telomere length (LTL) is a marker of biological age and shorter LTL is associated with increased risk of cardiovascular disease. __Objectives__ To investigate whether LTL is influenced by birth size, childhood growth and long-term GH treatment. __Methods__ We analyzed LTL in 545 young adults with differences in birth size and childhood growth patterns. Previously GH-treated young adults born SGA (SGA-GH) were compared to untreated short SGA (SGA-S), SGA with spontaneous catch-up to a normal body size (SGA-CU), and appropriate for gestational age with a normal body size (AGA-NS). LTL was measured using a quantitative PCR assay. __Results__ We found a positive association between birth length and LTL (p = 0.04), and a trend towards a positive association between birth weight and LTL (p = 0.08), after adjustments for gender, age, gestational age and adult body size. Weight gain during infancy and childhood and fat mass percentage were not as

    Integration of genetics into a systems model of electrocardiographic traits using humanCVD BeadChip

    Get PDF
    &lt;p&gt;Background—Electrocardiographic traits are important, substantially heritable determinants of risk of arrhythmias and sudden cardiac death.&lt;/p&gt; &lt;p&gt;Methods and Results—In this study, 3 population-based cohorts (n=10 526) genotyped with the Illumina HumanCVD Beadchip and 4 quantitative electrocardiographic traits (PR interval, QRS axis, QRS duration, and QTc interval) were evaluated for single-nucleotide polymorphism associations. Six gene regions contained single nucleotide polymorphisms associated with these traits at P&#60;10−6, including SCN5A (PR interval and QRS duration), CAV1-CAV2 locus (PR interval), CDKN1A (QRS duration), NOS1AP, KCNH2, and KCNQ1 (QTc interval). Expression quantitative trait loci analyses of top associated single-nucleotide polymorphisms were undertaken in human heart and aortic tissues. NOS1AP, SCN5A, IGFBP3, CYP2C9, and CAV1 showed evidence of differential allelic expression. We modeled the effects of ion channel activity on electrocardiographic parameters, estimating the change in gene expression that would account for our observed associations, thus relating epidemiological observations and expression quantitative trait loci data to a systems model of the ECG.&lt;/p&gt; &lt;p&gt;Conclusions—These association results replicate and refine the mapping of previous genome-wide association study findings for electrocardiographic traits, while the expression analysis and modeling approaches offer supporting evidence for a functional role of some of these loci in cardiac excitation/conduction.&lt;/p&gt

    Biomarkers of oxidative stress: methods and measures of oxidative DNA damage (COMET assay) and telomere shortening

    Get PDF
    Oxidative stress is fast becoming the nutritional and medical buzzword for the twenty-first century. The theoretical importance of oxidative stress in diabetes is highlighted by its potential double impact on metabolic dysfunction on one hand and the vascular system on the other hand. The new concept of oxidative stress, being an important trigger in the onset and progression of diabetes and its complications, emphasizes the need for measurement of markers of oxidation to assess the degree of oxidative stress. While we have been routinely measuring biomarkers in our molecular epidemiology projects, here we discuss the utility of two assays, (a) DNA damage assessment by COMET measurement and (b) telomere length measurement. As DNA damage is efficiently repaired by cellular enzymes, its measurement gives a snapshot view of the level of oxidative stress. The protocol allows for measurement of oxidative DNA damage (FPG-sensitive DNA strand breaks). Telomere length measured by Southern blotting technique allows one to estimate the chronic burden of oxidative stress at the molecular level and is now considered as biomarker of biological aging

    Genetic architecture of ambulatory blood pressure in the general population: insights from cardiovascular gene-centric array.

    Get PDF
    Genetic determinants of blood pressure are poorly defined. We undertook a large-scale, gene-centric analysis to identify loci and pathways associated with ambulatory systolic and diastolic blood pressure. We measured 24-hour ambulatory blood pressure in 2020 individuals from 520 white European nuclear families (the Genetic Regulation of Arterial Pressure of Humans in the Community Study) and genotyped their DNA using the Illumina HumanCVD BeadChip array, which contains ≈50 000 single nucleotide polymorphisms in &gt;2000 cardiovascular candidate loci. We found a strong association between rs13306560 polymorphism in the promoter region of MTHFR and CLCN6 and mean 24-hour diastolic blood pressure; each minor allele copy of rs13306560 was associated with 2.6 mm Hg lower mean 24-hour diastolic blood pressure (P=1.2×10(-8)). rs13306560 was also associated with clinic diastolic blood pressure in a combined analysis of 8129 subjects from the Genetic Regulation of Arterial Pressure of Humans in the Community Study, the CoLaus Study, and the Silesian Cardiovascular Study (P=5.4×10(-6)). Additional analysis of associations between variants in gene ontology-defined pathways and mean 24-hour blood pressure in the Genetic Regulation of Arterial Pressure of Humans in the Community Study showed that cell survival control signaling cascades could play a role in blood pressure regulation. There was also a significant overrepresentation of rare variants (minor allele frequency: &lt;0.05) among polymorphisms showing at least nominal association with mean 24-hour blood pressure indicating that a considerable proportion of its heritability may be explained by uncommon alleles. Through a large-scale gene-centric analysis of ambulatory blood pressure, we identified an association of a novel variant at the MTHFR/CLNC6 locus with diastolic blood pressure and provided new insights into the genetic architecture of blood pressure

    Evidence for accelerated biological aging in young adults with prader-willi syndrome

    Get PDF
    Objective: Adults with Prader–Willi syndrome (PWS) are at increased risk of developing age-associated diseases early in life and, like in premature aging syndromes, aging might be accelerated. We investigated leukocyte telomere length (LTL), a marker of biological age, in young adults with PWS and compared LTL to healthy young adults of similar age. As all young adults with PWS were treated with growth hormone (GH), we also compared LTL in PWS subjects to GH-treated young adults born short for gestational age (SGA). Design: Cross-sectional study in age-matched young adults; 47 with PWS, 135 healthy, and 75 born SGA. Measurements: LTL measured by quantitative polymerase chain reaction, expressed as telomere/single copy gene ratio. Results: Median (interquartile range) LTL was 2.6 (2.4–2.8) at a median (interquartile range) age of 19.2 (17.7–21.3) years in PWS, 3.1 (2.9–3.5) in healthy young adults and 3.1 (2.8–3.4) in the SGA group. Median LTL in PWS was significantly lower compared to both control groups (P < .01). In PWS, a lower LTL tended to be associated with a lower total IQ (r = 0.35, P = .08). There was no association between LTL and duration of GH treatment, cumulative GH dose, or several risk factors for type 2 diabetes mellitus or cardiovascular disease. Conclusions: Young adults with PWS have significantly shorter median LTL compared to agematched healthy young adults and GH-treated young adults born SGA. The shorter telomeres might play a role in the premature aging in PWS, independent of GH. Longitudinal research is needed to determine the influence of LTL on aging in PWS

    Longitudinal telomere length and body composition in healthy term-born infants during the first two years of life

    Get PDF
    Objective Leukocyte telomere length (LTL) is one of the markers of biological aging as shortening occurs over time. Shorter LTL has been associated with adiposity and a higher risk of cardiovascular diseases. The objective was to assess LTL and LTL shortening during the first 2 years of life in healthy, term-born infants and to associate LTL shortening with potential stressors and body composition. Study design In 145 healthy, term-born infants (85 boys), we measured LTL in blood, expressed as telomere to single-gene copy ratio (T/S ratio), at 3 months and 2 years by quantitative PCR technique. Fat mass (FM) was assessed longitudinally by PEAPOD, DXA, and abdominal FM by ultrasound. Results LTL decreased by 8.5% from 3 months to 2 years (T/S ratio 4.10 vs 3.75, p<0.001). LTL shortening from 3 months to 2 years associated with FM%(R = 0.254), FM index(R = 0.243) and visceral FM(R = 0.287) at 2 years. LTL shortening tended to associate with gain in FM% from 3 to 6 months (R = 0.155, p = 0.11), in the critical window for adiposity programming. There was a trend to a shorter LTL in boys at 2 years(p = 0.056). LTL shortening from 3 months to 2 years was not different between sexes. Conclusion We present longitudinal LTL values and show that LTL shortens considerably (8.5%) during the first 2 years of life. LTL shortening during first 2 years of life was associated with FM%, FMI and visceral FM at age 2 years, suggesting that adverse adiposity programming in early life could contribute to more LTL shortening

    Exome Sequencing Analysis Identifies Rare Variants in ATM and RPL8 That Are Associated With Shorter Telomere Length

    Get PDF
    Telomeres are important for maintaining genomic stability. Telomere length has been associated with aging, disease, and mortality and is highly heritable (∼82%). In this study, we aimed to identify rare genetic variants associated with telomere length using whole-exome sequence data. We studied 1,303 participants of the Erasmus Rucphen Family (ERF) study, 1,259 of the Rotterdam Study (RS), and 674 of the British Heart Foundation Family Heart Study (BHF-FHS). We conducted two analyses, first we analyzed the family-based ERF study and used the RS and BHF-FHS for replication. Second, we combined the summary data of the three studies in a meta-analysis. Telomere length was measured by quantitative polymerase chain reaction in blood. We identified nine rare variants significantly associated with telomere length (p-value < 1.42 × 10–7, minor allele frequency of 0.2–0.5%) in the ERF study. Eight of these variants (in C11orf65, ACAT1, NPAT, ATM, KDELC2, and EXPH5) were located on chromosome 11q22.3 that contains ATM, a gene involved in telomere maintenance. Although we were unable to replicate the variants in the RS and BHF-FHS (p-value ≥ 0.21), segregation analysis showed that all variants segregate with shorter telomere length in a family. In the meta-analysis of all studies, a nominally significant association with LTL was observed with a rare variant in RPL8 (p-value = 1.48 × 10−6), which has previously been associated with age. Additionally, a novel rare variant in the known RTEL1 locus showed suggestive evidence for association (p-value = 1.18 × 10–4) with LTL. To conclude, we identified novel rare variants associated with telomere length. Larger samples size are needed to confirm these findings and to identify additional variants

    Common variants near MC4R are associated with fat mass, weight and risk of obesity.

    Get PDF
    To identify common variants influencing body mass index (BMI), we analyzed genome-wide association data from 16,876 individuals of European descent. After previously reported variants in FTO, the strongest association signal (rs17782313, P = 2.9 x 10(-6)) mapped 188 kb downstream of MC4R (melanocortin-4 receptor), mutations of which are the leading cause of monogenic severe childhood-onset obesity. We confirmed the BMI association in 60,352 adults (per-allele effect = 0.05 Z-score units; P = 2.8 x 10(-15)) and 5,988 children aged 7-11 (0.13 Z-score units; P = 1.5 x 10(-8)). In case-control analyses (n = 10,583), the odds for severe childhood obesity reached 1.30 (P = 8.0 x 10(-11)). Furthermore, we observed overtransmission of the risk allele to obese offspring in 660 families (P (pedigree disequilibrium test average; PDT-avg) = 2.4 x 10(-4)). The SNP location and patterns of phenotypic associations are consistent with effects mediated through altered MC4R function. Our findings establish that common variants near MC4R influence fat mass, weight and obesity risk at the population level and reinforce the need for large-scale data integration to identify variants influencing continuous biomedical traits
    corecore