252 research outputs found

    16GT: A fast and sensitive variant caller using a 16-genotype probabilistic model

    Get PDF
    © The Author 2017. Published by Oxford University Press. 16GT is a variant caller for Illumina whole-genome and whole-exome sequencing data. It uses a new 16-genotype probabilistic model to unify single nucleotide polymorphism and insertion and deletion calling in a single variant calling algorithm. In benchmark comparisons with 5 other widely used variant callers on a modern 36-core server, 16GT demonstrated improved sensitivity in calling single nucleotide polymorphisms, and it provided comparable sensitivity and accuracy for calling insertions and deletions as compared to the GATK HaplotypeCaller. 16GT is available at https://github.com/aquaskyline/16GT.Link_to_subscribed_fulltex

    Early Life Stress as an Influence on Limbic Epilepsy: An Hypothesis Whose Time has Come?

    Get PDF
    The pathogenesis of mesial temporal lobe epilepsy (MTLE), the most prevalent form of refractory focal epilepsy in adults, is thought to begin in early life, even though seizures may not commence until adolescence or adulthood. Amongst the range of early life factors implicated in MTLE causation (febrile seizures, traumatic brain injury, etc.), stress may be one important contributor. Early life stress is an a priori agent deserving study because of the large amount of neuroscientific data showing enduring effects on structure and function in hippocampus and amygdala, the key structures involved in MTLE. An emerging body of evidence directly tests hypotheses concerning early life stress and limbic epilepsy: early life stressors, such as maternal separation, have been shown to aggravate epileptogenesis in both status epilepticus and kindling models of limbic epilepsy. In addition to elucidating its influence on limbic epileptogenesis itself, the study of early life stress has the potential to shed light on the psychiatric disorder that accompanies MTLE. For many years, psychiatric comorbidity was viewed as an effect of epilepsy, mediated psychologically and/or neurobiologically. An alternative – or complementary – perspective is that of shared causation. Early life stress, implicated in the pathogenesis of several psychiatric disorders, may be one such causal factor. This paper aims to critically review the body of experimental evidence linking early life stress and epilepsy; to discuss the direct studies examining early life stress effects in current models of limbic seizures/epilepsy; and to suggest priorities for future research

    Quake: quality-aware detection and correction of sequencing errors

    Get PDF
    We introduce Quake, a program to detect and correct errors in DNA sequencing reads. Using a maximum likelihood approach incorporating quality values and nucleotide specific miscall rates, Quake achieves the highest accuracy on realistically simulated reads. We further demonstrate substantial improvements in de novo assembly and SNP detection after using Quake. Quake can be used for any size project, including more than one billion human reads, and is freely available as open source software from http://www.cbcb.umd.edu/software/quake

    Searching for SNPs with cloud computing

    Get PDF
    Novel software utilizing cloud computing technology to cost-effectively align and map SNPs from a human genome in three

    Early Life Stress Enhancement of Limbic Epileptogenesis in Adult Rats: Mechanistic Insights

    Get PDF
    BACKGROUND: Exposure to early postnatal stress is known to hasten the progression of kindling epileptogenesis in adult rats. Despite the significance of this for understanding mesial temporal lobe epilepsy (MTLE) and its associated psychopathology, research findings regarding underlying mechanisms are sparse. Of several possibilities, one important candidate mechanism is early life 'programming' of the hypothalamic-pituitary-adrenal (HPA) axis by postnatal stress. Elevated corticosterone (CORT) in turn has consequences for neurogenesis and cell death relevant to epileptogenesis. Here we tested the hypotheses that MS would augment seizure-related corticosterone (CORT) release and enhance neuroplastic changes in the hippocampus. METHODOLOGY/PRINCIPAL FINDINGS: Eight-week old Wistar rats, previously exposed on postnatal days 2-14 to either maternal separation stress (MS) or control brief early handling (EH), underwent rapid amygdala kindling. We measured seizure-induced serum CORT levels and post-kindling neurogenesis (using BrdU). Three weeks post-kindling, rats were euthanized for histology of the hippocampal CA3c region (pyramidal cell counts) and dentate gyrus (DG) (to count BrdU-labelled cells and measure mossy fibre sprouting). As in our previous studies, rats exposed to MS had accelerated kindling rates in adulthood. Female MS rats had heightened CORT responses during and after kindling (p<0.05), with a similar trend in males. In both sexes total CA3c pyramidal cell numbers were reduced in MS vs. EH rats post-kindling (p = 0.002). Dentate granule cell neurogenesis in female rats was significantly increased post-kindling in MS vs. EH rats. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that early life stress results in enduring enhancement of HPA axis responses to limbic seizures, with increased hippocampal CA3c cell loss and augmented neurogenesis, in a sex-dependent pattern. This implicates important candidate mechanisms through which early life stress may promote vulnerability to limbic epileptogenesis in rats as well as to human MTLE and its associated psychiatric disorders

    Versatile and open software for comparing large genomes

    Get PDF
    The newest version of MUMmer easily handles comparisons of large eukaryotic genomes at varying evolutionary distances, as demonstrated by applications to multiple genomes. Two new graphical viewing tools provide alternative ways to analyze genome alignments. The new system is the first version of MUMmer to be released as open-source software. This allows other developers to contribute to the code base and freely redistribute the code. The MUMmer sources are available at

    The Genome Assembly Archive: A New Public Resource

    Get PDF
    With the genome assembly archive, it is possible to examine the raw data that underlies the DNA sequence in any sequenced genom

    Prevalence of mental health disorders in inflammatory bowel disease: an Australian outpatient cohort

    Full text link
    BACKGROUND: This study aimed to characterize prevalence of anxiety and depressive conditions and uptake of mental health services in an Australian inflammatory bowel disease (IBD) outpatient setting. METHODS: Eighty-one IBD patients (39 males, mean age 35 years) attending a tertiary hospital IBD outpatient clinic participated in this study. Disease severity was evaluated according to the Manitoba Index. Diagnosis of an anxiety or depressive condition was based upon the Mini-International Neuropsychiatric Interview and the Hospital Anxiety and Depression Scale. RESULTS: Based on Hospital Anxiety and Depression Scale subscale scores &gt;8 and meeting Mini-International Neuropsychiatric Interview criteria, 16 (19.8%) participants had at least one anxiety condition, while nine (11.1%) had a depressive disorder present. Active IBD status was associated with higher prevalence rates across all anxiety and depressive conditions. Generalized anxiety was the most common (12 participants, 14.8%) anxiety condition, and major depressive disorder (recurrent) was the most common depressive condition reported (five participants, 6.2%). Seventeen participants (21%) reported currently seeking help for mental health issues while 12.4% were identified has having at least one psychological condition but not seeking treatment. CONCLUSION: We conclude that rates of anxiety and depression are high in this cohort, and that IBD-focused psychological services should be a key component of any holistic IBD service, especially for those identified as having active IBD

    Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing

    Get PDF
    Long-read sequencing facilitates assembly of complex genomic regions. In plants, loci containing nucleotide-binding, leucine-rich repeat (NLR) disease resistance genes are an important example of such regions. NLR genes constitute one of the largest gene families in plants and are often clustered, evolving via duplication, contraction, and transposition. We recently mapped the Xo1 locus for resistance to bacterial blight and bacterial leaf streak, found in the American heirloom rice variety Carolina Gold Select, to a region that in the Nipponbare reference genome is NLR gene-rich. Here, toward identification of the Xo1 gene, we combined Nanopore and Illumina reads and generated a high-quality Carolina Gold Select genome assembly. We identified 529 complete or partial NLR genes and discovered, relative to Nipponbare, an expansion of NLR genes at the Xo1 locus. One of these has high sequence similarity to the cloned, functionally similar Xa1 gene. Both harbor an integrated zfBED domain, and the repeats within each protein are nearly perfect. Across diverse Oryzeae, we identified two sub-clades of NLR genes with these features, varying in the presence of the zfBED domain and the number of repeats. The Carolina Gold Select genome assembly also uncovered at the Xo1 locus a rice blast resistance gene and a gene encoding a polyphenol oxidase (PPO). PPO activity has been used as a marker for blast resistance at the locus in some varieties; however, the Carolina Gold Select sequence revealed a loss-of-function mutation in the PPO gene that breaks this association. Our results demonstrate that whole genome sequencing combining Nanopore and Illumina reads effectively resolves NLR gene loci. Our identification of an Xo1 candidate is an important step toward mechanistic characterization, including the role(s) of the zfBED domain. Finally, the Carolina Gold Select genome assembly will facilitate identification of other useful traits in this historically important variety. Author summary Plants lack adaptive immunity, and instead contain repeat-rich, disease resistance genes that evolve rapidly through duplication, recombination, and transposition. The number, variation, and often clustered arrangement of these genes make them challenging to sequence and catalog. The US heirloom rice variety Carolina Gold Select has resistance to two important bacterial diseases. Toward identifying the responsible gene(s), we combined long- and short-read sequencing technologies to assemble the whole genome and identify the resistance gene repertoire. We previously narrowed the location of the gene(s) to a region on chromosome four. The region in Carolina Gold Select is larger than in the rice reference genome (Nipponbare) and contains twice as many resistance genes. One shares unusual features with a known bacterial disease resistance gene, suggesting that it confers the resistance. Across diverse varieties and related species, we identified two widely-distributed groups of such genes. The results are an important step toward mechanistic characterization and deployment of the bacterial disease resistance. The genome assembly also identified a resistance gene for a fungal disease and predicted a marker phenotype used in breeding for resistance. Thus, the Carolina Gold Select genome assembly can be expected to aid in the identification and deployment of other valuable traits

    Computational identification of developmental enhancers: conservation and function of transcription factor binding-site clusters in Drosophila melanogaster and Drosophila pseudoobscura

    Get PDF
    BACKGROUND: The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. RESULTS: We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene, and assayed embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. CONCLUSIONS: Measuring conservation of sequence features closely linked to function - such as binding-site clustering - makes better use of comparative sequence data than commonly used methods that examine only sequence identity
    corecore