422 research outputs found

    CFD Modeling of a Laboratory-Scale Setup for Thermochemical Materials Performance Analysis

    Get PDF
    The search for energy saving is nowadays mandatory because of the constant growth of CO2 emissions caused by an inefficient energy management. Thermal Energy Storage (TES) has an important role in designing of energy efficient systems, including solar energy storage (daily or seasonal) and waste heat from industrial batch processes. Different solutions are possible for thermal storage, based on sensible heat (e.g. water tanks), latent heat (phase change materials) or reaction enthalpy (thermochemical systems). In Thermochemical TES, a material is chosen so that it shows a high-enthalpy reversible chemical reaction at a desired temperature. In particular, water sorption in some inorganic salt hydrates is pointed out as one of the most suitable reactions for low temperature energy storage (60-120 °C). The reaction products, water and salt in a less hydrated form, are kept separated and consequently the heat is stored. Energy release is obtained with salt hydration. The main advantages are an energy storage capacity higher than other TES technologies and the possibility to control the energy release. On the other hand, one of the main issues is the difficulty to test materials performance, because standard characterization techniques use small amount of samples and their properties change dramatically when the system is scaled up to large reactors. The aim of this work is to realize a laboratory scale setup to test the performance of salt hydrate composites. A scheme of the system is reported in the attached figure (above). The active material is kept in an evaporator at a temperature sufficient to generate the dehydration reaction. Extracted water mass is measured in time in a condenser at 0°C. Air flow, temperature and humidity are measured with sensors in the system. The system was simulated using COMSOL® software. In particular the simulation was inspired by two models from the Application Library, Degradation of DNA in Plasma and Protein Adsorption. At first, a zero dimensional component was created with the Reaction Engineering module with two reactions to evaluate both the dehydration and condensation steps: H2Ocry->H2Ovap H2Ovap->H2Oliq Where H2Ocry is the crystallization water in the salt hydrate, H2Ovap is the air humidity and H2Oliq is the condensed water. Using a Parameter Estimation module, experimental data about dehydration were imported in the software and used to estimate the reactions kinetics constants. After that, using a Generate Space Dependent Model module we obtained a 3D component with a realistic system geometry (see attached figure below) including the modules Chemistry, Transport of Diluted Species, Surface Reactions, Heat transfer in Fluids and Single Phase Laminar Flow. Rate constants calculated in the zero-dimension model were used as first guess for the 3D model reactions. We verified that the model is able to evaluate temperature, flow and water concentration as well as the evolution of the two reactions in time. We expect that this model will allow us to classify different Thermochemical TES materials about their efficiency in heat and mass exchange, as well as to refine the design of the thermal storage system

    Transmission Electron Microscopy, High Resolution X-Ray Diffraction and Rutherford Backscattering Study of Strain Release in InGaAs/GaAs Buffer Layers

    Get PDF
    Strain release and dislocation distribution in InGaAs/GaAs double heterostructures, step-graded and linear-graded buffer layers have been studied. A higher misfit dislocation density at the inner interface between the InGaAs layer and the substrate was found in all the samples. This corresponded to a strain release of the inner ternary layers much larger than predicted by equilibrium theories. The residual parallel strain of the external layers as a function of their thickness was found to follow a curve approximately of slope -0.5, in agreement with previous investigations on single InGaAs layers. This result has been interpreted as evidence that the elastic energy per unit interface area remains constant during the epilayer growth. The presence of numerous single and multiple dislocation loops inside the substrate was attributed to the strain relaxation occurring through dislocation multiplication via Frank-Read sources activated during the growth. A comparison with InGaAs/GaAs step-graded and linear-graded heterostructures is also shown and briefly discussed. Finally, lattice plane tilts between epilayers and substrates have been found due to the imbalance in the linear density of misfit dislocations with opposite component of the Burgers vector, b⊥eff, perpendicular to the interface

    Oxidative stress biomarkers in Fabry disease: is there a room for them?

    Get PDF
    Background: Fabry disease (FD) is an X-linked lysosomal storage disorder, caused by deficient activity of the alpha-galactosidase A enzyme leading to progressive and multisystemic accumulation of globotriaosylceramide. Recent data point toward oxidative stress signalling which could play an important role in both pathophysiology and disease progression. Methods: We have examined oxidative stress biomarkers [Advanced Oxidation Protein Products (AOPP), Ferric Reducing Antioxidant Power (FRAP), thiolic groups] in blood samples from 60 patients and 77 healthy controls. Results: AOPP levels were higher in patients than in controls (p < 0.00001) and patients presented decreased levels of antioxidant defences (FRAP and thiols) with respect to controls (p < 0.00001). In a small group of eight treatment-naïve subjects with FD-related mutations, we found altered levels of oxidative stress parameters and incipient signs of organ damage despite normal lyso-Gb3 levels. Conclusions: Oxidative stress occurs in FD in both treated and naïve patients, highlighting the need of further research in oxidative stress-targeted therapies. Furthermore, we found that oxidative stress biomarkers may represent early markers of disease in treatment-naïve patients with a potential role in helping interpretation of FD-related mutations and time to treatment decision

    Haploinsufficiency of the NOTCH1 Receptor as a Cause of Adams-Oliver Syndrome With Variable Cardiac Anomalies.

    Get PDF
    BACKGROUND: Adams-Oliver syndrome (AOS) is a rare disorder characterized by congenital limb defects and scalp cutis aplasia. In a proportion of cases, notable cardiac involvement is also apparent. Despite recent advances in the understanding of the genetic basis of AOS, for the majority of affected subjects, the underlying molecular defect remains unresolved. This study aimed to identify novel genetic determinants of AOS. METHODS AND RESULTS: Whole-exome sequencing was performed for 12 probands, each with a clinical diagnosis of AOS. Analyses led to the identification of novel heterozygous truncating NOTCH1 mutations (c.1649dupA and c.6049_6050delTC) in 2 kindreds in which AOS was segregating as an autosomal dominant trait. Screening a cohort of 52 unrelated AOS subjects, we detected 8 additional unique NOTCH1 mutations, including 3 de novo amino acid substitutions, all within the ligand-binding domain. Congenital heart anomalies were noted in 47% (8/17) of NOTCH1-positive probands and affected family members. In leukocyte-derived RNA from subjects harboring NOTCH1 extracellular domain mutations, we observed significant reduction of NOTCH1 expression, suggesting instability and degradation of mutant mRNA transcripts by the cellular machinery. Transient transfection of mutagenized NOTCH1 missense constructs also revealed significant reduction in gene expression. Mutant NOTCH1 expression was associated with downregulation of the Notch target genes HEY1 and HES1, indicating that NOTCH1-related AOS arises through dysregulation of the Notch signaling pathway. CONCLUSIONS: These findings highlight a key role for NOTCH1 across a range of developmental anomalies that include cardiac defects and implicate NOTCH1 haploinsufficiency as a likely molecular mechanism for this group of disorders
    corecore