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Abstract

Background—Adams-Oliver syndrome (AOS) is a rare disorder characterized by congenital 

limb defects and scalp cutis aplasia. In a proportion of cases, notable cardiac involvement is also 

apparent. Despite recent advances in the understanding of the genetic basis of AOS, for the 

majority of affected subjects the underlying molecular defect remains unresolved. This study 

aimed to identify novel genetic determinants of AOS.

Methods and Results—Whole-exome sequencing was performed for 12 probands, each with a 

clinical diagnosis of AOS. Analyses led to the identification of novel heterozygous truncating 

NOTCH1 mutations (c.1649dupA and c.6049_6050delTC) in two kindreds in which AOS was 

segregating as an autosomal dominant trait. Screening a cohort of 52 unrelated AOS subjects, we 

detected 8 additional unique NOTCH1 mutations, including three de novo amino-acid 

substitutions, all within the ligand-binding domain. Congenital heart anomalies were noted in 47% 

(8/17) of NOTCH1-positive probands and affected family members. In leucocyte-derived RNA 

from subjects harboring NOTCH1 extracellular domain mutations, we observed significant 

reduction of NOTCH1 expression, suggesting instability and degradation of mutant mRNA 

transcripts by the cellular machinery. Transient transfection of mutagenized NOTCH1 missense 

constructs also revealed significant reduction in gene expression. Mutant NOTCH1 expression was 

associated with down-regulation of the Notch target genes HEY1 and HES1, indicating that 

NOTCH1-related AOS arises through dysregulation of the Notch signaling pathway.

Conclusions—These findings highlight a key role for NOTCH1 across a range of 

developmental anomalies that include cardiac defects, and implicate NOTCH1 haploinsufficiency 

as a likely molecular mechanism for this group of disorders.
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Introduction

Adams-Oliver syndrome (AOS; MIM 100300) is a rare developmental disorder, 

characterized by a range of abnormalities that include cranial aplasia cutis congenita (ACC) 

and terminal transverse limb defects (TTLD).1,2 The spectrum of defects observed implies 

dysregulation of multiple developmental pathways. Congenital heart defects (CHDs) have 

been reported in conjunction with AOS in up to 20% of cases and, when present, represent a 

serious mortality risk.3,4 Cardiac defects are also commonly associated with systemic 

structural vascular abnormalities, of which cutis marmorata telangiectatica congenita 
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(CMTC) is the most frequently described.5 AOS primarily segregates as an autosomal 

dominant trait with variable phenotypic expression. A small number of kindreds are 

consistent with autosomal recessive disease gene transmission. In addition, sporadic cases 

with comparable clinical features indicate the occurrence of de novo mutations in causative 

disease genes.

The molecular genetic basis of AOS appears heterogeneous and, to date, defects within five 

genes have been reported, providing limited insight as to the molecular mechanisms 

underlying these important aspects of early development. Mutations of the ARHGAP31 and 

DOCK6 genes underlie a proportion of AOS cases displaying autosomal dominant and 

recessive inheritance, respectively.6,7 Both ARHGAP31 and DOCK6 regulate the activity of 

the Rho GTPases Cdc42 and Rac1, which cycle between active, GTP-bound and inactive, 

GDP-bound states through the opposing modes of action of guanine nucleotide exchange 

factors (GEFs) and GTPase-activating proteins (GAPs). We have previously demonstrated 

that ARHGAP31 mutations cause AOS through a gain-of-function mechanism, which leads 

to an accumulation of inactive GTPase, disrupting actin cytoskeletal dynamics.6 Mutations 

in DOCK6 result in a more severe, multi-systemic phenotype due to a homozygous loss of 

GEF function.7

More recently, the Notch signaling pathway has been implicated in AOS pathogenesis by 

the discovery of heterozygous alterations in the RBPJ gene, encoding the major transcription 

factor for Notch.8 Missense mutations within the DNA-binding domain of RBPJ result in 

impaired binding ability of the transcription factor to the HES1 promoter, likely disrupting 

the regulation of Notch target genes downstream.8 Moreover, two independent studies have 

identified homozygous mutations of EOGT, encoding an EGF domain-specific enzyme 

demonstrated as critical in the glycosylation of Notch1 in mammalian cells.9,10 Most 

recently, a report by Stittrich et al. identified mutations of the NOTCH1 gene in a proportion 

of an AOS cohort.11

These studies have provided some important insights into the molecular processes key to the 

development of AOS. However, despite congenital heart anomalies affecting approximately 

1 in 5 subjects with AOS, the ARHGAP31- and RBPJ-positive pedigrees reported in the 

literature have a notable lack of cardiovascular involvement.6,8,12 Although the majority of 

these mutation carriers may not have been assessed by cardiac imaging, these data implicate 

distinct regulatory systems in the pathogenesis of autosomal dominant AOS with congenital 

heart defects. We designed an exome-wide based study, to further define the genetic 

mechanisms relevant to the pathogenesis of AOS. Through this work, we identified novel 

heterozygous mutations of NOTCH1, providing independent verification of a critical role for 

this gene as a common cause of AOS in both autosomal dominant and sporadic cases. We 

have further used gene expression studies to examine the impact of NOTCH1 mutation on 

downstream signaling and demonstrated a pathogenic effect in RNA extracted from AOS 

subjects harboring NOTCH1 defects. These cases display a striking genotype-phenotype 

correlation with a high prevalence of cardiac and vascular anomalies, highlighting the 

importance of Notch signaling in cardiovascular development and demonstrating a novel 

role for NOTCH1 in multiple developmental processes that include scalp and limb 

formation.
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Methods

Patient cohorts

Exome sequencing was performed for 12 unrelated probands, diagnosed with autosomal 

dominant AOS and negative for ARHGAP31 and RBPJ mutations. Criteria for diagnosis 

were according to the guidelines by Snape et al.5 Subsequent mutation screening of the 

NOTCH1 coding regions comprised a cohort of 52 additional individuals with a diagnosis of 

AOS (n=11 autosomal dominant, n=41 isolated cases with no known family history). 

Cardiac clinical evaluation and echocardiography of NOTCH1-positive patients and family 

members was conducted at specialist cardiology centers (UK, Germany, Italy, France) 

following referral by the respective consultant clinical geneticist. The study complies with 

the Declaration of Helsinki and informed written consent was obtained from all participants 

before taking part. The research protocol was approved by the local ethics committees 

(NRES Committee London (Bromley), UK and the Ethics Board of the Medical Faculty of 

the University of Erlangen, Germany). Patient samples were collected as either saliva 

(Oragene DNA collection kit, DNA Genotek) or blood, and genomic DNA was extracted 

according to standard protocols.

Exome sequencing and mutation detection

Exome libraries were generated with the SureSelect Human All Exon Target Enrichment kit 

(Agilent Technologies) using genomic DNA extracted from peripheral blood. Paired-end 

sequence reads were generated on an Illumina HiSeq 2000. Read alignment to the reference 

genome (hg19) and variant calling were performed as described previously,6 with variant 

annotation completed using the ANNOVAR software.13 Sequence variants were compared 

against publicly available databases (HapMap, 1000 Genomes Project, dbSNP, the NHLBI 

Exome Sequencing Project (ESP) Exome Variant Server, and an in-house repository of 400 

exomes) to assess their novelty. Candidate genes were prioritized on the basis of novel 

truncating mutations (frameshift, nonsense, splice-site) in two or more independent 

probands. Of these, NOTCH1 was taken forward for further study due to compelling 

biological relevance to AOS pathogenesis. Validation of variant segregation and mutation 

screening of all NOTCH1 coding regions and intron-exon boundaries was performed by 

direct DNA sequencing using BigDye Terminator v3.1 chemistry on an ABI3730xl (Applied 

Biosystems).

Mutagenesis and cell culture

Wild-type NOTCH1 cDNA in pFN1A (Kazusa DNA Research Institute)14 was purchased 

from Promega. Identified AOS missense variants were introduced by site-directed 

mutagenesis using the QuikChange II XL kit (Agilent Technologies). Primer details are 

available on request. Cells were maintained at 37°C in a humidified incubator with 5% CO2. 

Human endometrioid cancer (HeLa) cells were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) with Glutamax (Gibco Life Technologies), supplemented with 10% fetal 

bovine serum. HeLa cells were seeded in 100 mm dishes and grown to 80% confluence. 

Transient transfection was performed using FuGene HD transfection reagent (Promega) and 

transfected cells were incubated for 48 hours before harvesting for RNA extraction.
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Gene-expression analysis

Total RNA was extracted from 2.5 ml of peripheral blood from NOTCH1-positive patients 

and a 26 year old clinically unaffected female control using the PAXgene Blood RNA 

System (PreAnalytiX), following the manufacturer’s guidelines. For mutagenized 

constructs, RNA was extracted from transfected cells with the RNeasy Mini kit (Qiagen), 

according to the manufacturer’s instructions. 500 ng of RNA was used for first strand cDNA 

synthesis with the High Capacity cDNA Reverse Transcription kit (Applied Biosystems). 

Quantitative real-time PCR was performed on a StepOnePlus real-time PCR machine 

(Applied Biosystems) using double-dye Taqman-style detection chemistry with the 

PrimerDesign 2× Precision Mastermix and custom-designed probe sets for NOTCH1, HEY1 

and HES1 mRNAs (PrimerDesign). GAPDH and ACTB house-keeping genes were used for 

normalization in mRNA relative quantifications using SDS v2.2 software. Gene of interest 

expression levels for patient and mutagenized samples were calculated by the 2−ΔΔCt method 

relative to the wild-type baseline. Statistical analysis of real-time data was performed using 

a Mann-Whitney test to generate two-tailed p values (VassarStats software).

Results

Clinical features of NOTCH1 positive families

The proband of family 1 (1-II:1) displayed cutis aplasia and marked TTLD at birth. The 

sibling 1-II:2 was also born with a severe cutaneous and bony scalp defect, with TTLD 

affecting both feet. On examination, the obligate carrier mother (1-I:3) exhibited no scalp or 

limb defects, but was found to have an unexplained heart murmur. Subject 1-I:1 had died at 

5 months due to a congenital heart defect, but no further details were available. Patient 1-II:4 

presented with syndactyly of the left hand and both feet, and CMTC on the abdomen and 

legs. Echocardiography revealed mild aortic stenosis and mild aortic regurgitation. Similar 

digit abnormalities and scalp ACC were displayed by subject 1-III:1. Although 1-III:2 

appeared clinically normal on examination, sonography of the heart also revealed mild aortic 

regurgitation (Table 1).

Family 2 has been previously described by Dallapiccola et al.15 The proband (2-II:1) and his 

mother both exhibited ACC of the midline region of the scalp and cardiac investigation by 

ultrasonography identified coarctation of the aorta in both individuals. The mother (2-I:2) 

also had a vascular anomaly consisting of duplication of the right femoral artery. Surgical 

intervention to repair the aortic coarctation and femoral artery duplication were conducted at 

14 and 17 years of age, respectively. The cardiac defect in subject 2-II:1 resembled the so-

called ‘Shone’s complex’, an anatomic variant consisting of multiple levels of left-sided 

obstructive CHDs,3,18 including aortic coarctation, bicuspid aortic valve, and parachute non-

stenotic mitral valve with mild regurgitation. Coarctectomy was performed at 5 months of 

age.

Patient 3-III:1 was born with a large area of scalp ACC with an underlying calvarial defect 

and shortened distal phalanges of the toes (Figure 1). A recent echocardiography detected no 

obvious abnormality. The obligate carrier father (3-II:2) was clinically normal and 

cardiology examination was negative for cardiac defects. The relative 3-II:3 was considered 
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to be affected with minor terminal hypoplasia of the phalanges of some toes but no cardiac 

anomaly was detected on sonography.

The proband of family 4 (4-II:1) presented with scalp ACC of the posterior parietal region 

and brachydactyly of both hands. Cardiovascular abnormalities included coarctation of the 

aorta, valvular aortic stenosis, parachute mitral valve with valvular insufficiency, and a 

subaortic membranous ventricular septal defect (VSD), also indicative of Shone’s complex. 

Aortic coarctation was operated at 15 days of life; aortic valvulotomy and intervention for 

VSD were performed at 9 years of age. Aortic valve substitution surgery was completed at 

23 years old. Echocardiography in the mother (4-I:2) revealed valvular aortic stenosis with 

thick fibrotic semilunar valves, moderate aortic valve insufficiency, and mild to moderate 

left ventricular hypertrophy (Table 1).

Specific clinical features of sporadic cases 5–11 are summarized in Table 1. Representative 

images of the limb and scalp defects observed across our AOS cohort are shown in Figure 1.

Identification of novel NOTCH1 variants

The analysis of exome profiles of affected male probands from families 1 and 2 identified 

novel heterozygous variants (c.1649dupA; p.Y550* and c.6049_6050delTC; p.S2017Tfs*9) 

in the NOTCH1 gene (NM_017617.3). Both mutations are predicted to result in premature 

stop codons of the mRNA transcript. Examination of available members of family 1 

confirmed segregation of the c.1649dupA mutation with the phenotype (Figure 2). 

Unfortunately, DNA was not available from the affected mother of proband 2-II:1 for 

segregation analysis of the c.6049_6050delTC variant.

Subsequent mutation screening of the NOTCH1 coding regions was performed in an 

extended replication cohort of 52 individuals with a clear clinical diagnosis of AOS. Novel 

NOTCH1 heterozygous variants were identified in 9 additional subjects. Taken together with 

the exome data, we report a total of ten distinct heterozygous mutations in the NOTCH1 

gene, one of which (c.1343G>A; p.R448Q) is recurrent, in 4 autosomal dominant families 

and 7 apparently sporadic cases with no known family history (Figure 2; Table I in the Data 

Supplement). All variants were confirmed by independent Sanger sequencing and absent 

from public variant databases. In families, segregation of the observed variant was 

consistent with the disease phenotype where DNA from multiple family members was 

available (Figure 2). In AOS mutation carriers with no family history of AOS or isolated 

cardiovascular disease, the sequencing of available parental DNA demonstrated that three 

mutations occurred de novo, namely c.1343G>A (p.R448Q) in proband 5-II:1, c.1345T>C 

(p.C449R) in proband 6-II:1 and c.1367G>A (p.C456Y) in proband 10-II:1. In Family 3, 

two unaffected paternal uncles and two clinically normal siblings of the proband 3-III:1 

were negative for the c.4120T>C (p.C1374R) mutation (data not shown). However, the 

unaffected obligate carrier father (3-II:2) was confirmed to carry the mutation. Similarly, the 

unaffected mother of subject 7-II:1 was found to harbor the c.1220C>G (p.P407R) variant. 

Cardiovascular assessment of 3-II:2 and 7-I:2 by echocardiography detected no underlying 

cardiac abnormality, confirming that these mutation carriers are phenotypically normal and 

demonstrating incomplete penetrance for mutations in this gene.
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NOTCH1 missense mutations are located within critical functional domains

Five of the six missense mutations identified in this study are predicted to be pathogenic by 

MutationTaster2,19 PolyPhen-2,20 and/or SIFT prediction software21 (Table II in the Data 

Supplement). The affected amino acids are located across the length of the receptor, in the 

main situated within the extracellular EGF-repeat domain. Specifically, four mutations 

(p.P407R, p.R448Q, p.C449R and p.C456Y) occur in or adjacent to the ligand-binding 

domain, specified by EGF repeats 11-13 (Figure 3A, Figure 4). The majority are strongly 

conserved across species and lie within highly conserved domains of the protein (Figure 

3B). Further, three amino acid substitutions (p.C449R, p.C456Y and p.C1374R) affect 

cysteine residues, which are likely to disrupt disulfide bonds that are critical for the structure 

of EGF-like domains (Figure 4). By contrast, the p.A1740S mutation is located within the 

transmembrane domain and, while conserved across mammalian species, is not conserved in 

other vertebrate species and has a less clear impact upon the structural integrity of the 

receptor so remains a variant of unknown significance (Figure 3).

NOTCH1 haploinsufficiency is implicated in AOS pathogenesis

To assess the level of mutant mRNA transcripts, we conducted quantitative real-time PCR 

studies using RNA extracted from peripheral blood of three patients harboring NOTCH1 

mutation (c.1343G>A and c.1649dupA (2 cases)). NOTCH1 transcript levels were 

significantly reduced by comparison to an unaffected control individual, demonstrating 

approximately 50% expression in all samples tested (Figure 5A). Whilst institutional ethical 

constraints precluded detailed cardiac evaluation of the control subject, it was made clear by 

personal testimony that there was no family history of developmental abnormalities relating 

to AOS-CHD. We additionally performed transient transfection of mutagenized NOTCH1 

constructs to examine the functional impact of missense mutations for which patient RNA 

was not available. Real-time PCR of RNA extracted from transfected cells also showed a 

significant decrease of NOTCH1 expression when compared to cells transfected with a full-

length wild-type construct and provided independent verification of NOTCH1 down-

regulation for the c.1343G>A mutation (Figure I in the Data Supplement).

To further interrogate the effect of NOTCH1 mutations on downstream signaling factors, we 

next performed gene expression studies to quantify the levels of HEY1 and HES1 transcript 

in patient-derived RNA samples. Subjects harboring the c.1649dupA frameshift mutation 

exhibited a particularly marked reduction of HEY1 transcript levels by comparison to wild-

type control (p=0.0004). By contrast, down-regulation of HEY1 expression was less 

profound for the c.1343G>A missense mutation (Figure 5B). In addition, HES1 mRNA 

levels were reduced in the c.1649dupA patients (p=0.0004); however, no significant 

deviation to the wild-type control was observed in the c.1343G>A sample (Figure 5C).

Discussion

Molecular genetic studies of AOS have successfully provided vital insights into the 

pathways relevant to the pathogenesis of this serious disorder of morphogenesis, through the 

identification of multiple causative genes. Yet, there remains substantial unexplained locus 

heterogeneity with the underlying molecular genetic determinants still uncharacterized for 
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the majority of cases. This degree of locus heterogeneity is uncommon for a rare disorder 

and suggests that AOS may represent a cluster of phenotypes with a related etiology, 

analogous to the RASopathies or ciliopathies.23,24

Herein, we report 10 novel germline NOTCH1 mutations in a patient cohort with autosomal 

dominant and sporadic forms of AOS. By comparison to AOS cases reported in the literature 

(13-20%),3-5,25,26 a significantly higher proportion of probands (5/11; 45%) presented with 

a congenital heart abnormality (Table 1). Similarly, cardiovascular anomalies were 

identified in 47% (8/17) of all affected variant carriers, thereby indicating that NOTCH1 

variants may represent a distinct subtype of AOS associated with cardiac malformations. A 

number of vascular complications, including CMTC and portal vein abnormalities, were 

additionally observed in NOTCH1-positive cases. Importantly, two of the probands in this 

study and two related mutation carriers have not undergone echocardiographic assessment; 

therefore we are unable to define the exact proportion of NOTCH1-positive cases with 

cardiovascular defects. In contrast to other gene reports, these patients predominantly 

demonstrate ACC with mild TTLD, affecting only terminal phalanges with nail hypoplasia 

(Figure 1). This study is further corroborated by a recent report of distinct NOTCH1 

mutations in 5 kindreds with AOS and cardiac spectrum defects.11

Emerging evidence is accumulating to implicate defects of the Notch signaling pathway in 

the pathogenesis of AOS. The Notch family of single-pass transmembrane receptors is well 

documented as playing a vital role in multiple cellular processes during embryogenesis and 

Notch pathway members have an established role in development of the cardiovascular 

system.27 Mutations in a subset of Notch components have been shown to underlie CHDs in 

both mice and humans but in exclusion of limb and scalp developmental abnormalities. For 

example, variants in the JAG1 gene, encoding a Notch ligand, underlie the majority of cases 

of Alagille syndrome28 whilst endothelial-specific deletion of Jag1 in the mouse leads to 

embryonic lethality and cardiovascular defects.29 NOTCH2 mutations account for a 

proportion of Alagille syndrome cases;30 however, distinct truncating variants in the 

terminal exon of NOTCH2 also lead to the osteolytic developmental disorder Hajdu-Cheney 

syndrome, indicating pleiotropic effects analogous to the NOTCH1 receptor.31,32 Of interest, 

mice homozygous for a targeted Jag2 deletion die perinatally due to craniofacial 

abnormalities and syndactyly of the fore- and hindlimbs, consistent features of the AOS 

spectrum.33 Furthermore, both Notch1 and Notch2 play key roles during mouse limb 

development in the regulation of apoptosis, a process mediated by Notch signaling through 

Jag2 in the apical ectodermal ridge,34,35 and the positive regulation of vascular growth 

through the promotion of angiogenesis and osteogenesis in bone.36 Despite numerous 

studies in lower organisms, the function of NOTCH1 during human fetal development 

remains to be fully elucidated.

In mammalian cells, canonical signaling through the Notch family (Notch1-4) is stimulated 

by ligand binding at the cell surface, which leads to proteolytic cleavage of the Notch 

intracellular domain (NICD), allowing for the formation of a transcriptional complex with 

RBPJ and co-activators (Figure 6).37 RBPJ is known to regulate the expression of the basic 

helix-loop-helix (bHLH) transcription factors HES1 and HEY1, both of which are related to 
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the Drosophila hairy and enhancer of split 1 gene. The stimulation of HES1 and HEY1 gene 

expression is therefore a direct readout of Notch signaling activation.

In this study, we report predicted protein truncating mutations (4/10) most likely to be 

subject to nonsense-mediated decay. The N-terminal ligand-binding domain of NOTCH1 

consists of a series of 36 EGF-like repeats. The majority (5/6) of the missense mutations 

identified in this study affect residues located within EGF domains of the receptor. These 

individual domains are characterized by a core β-pleated sheet, three disulfide bonds along 

with a series of variable loops.38 Within this region, EGF repeats 11-13 have been shown to 

be implicated with chelating Ca2+ which is essential for the maintenance of NOTCH1 

function.38,39 Three of the identified amino acid substitutions resulting in AOS (p.R448Q, 

p.C449R and p.C456Y) lie within EGF11 and potentially perturb function by disrupting the 

tertiary structure and affecting Ca2+ binding and/or ligand interaction. The X-ray structure 

of this region of wild-type NOTCH1 indicates that the side chains of Arg448 and Glu424 

interact electrostatically (Figure 4),22 thereby it is anticipated that the p.R448Q mutant is 

unstable. Similarly, the p.C449R and p.C456Y mutations will likely abolish the disulfide 

bonds between Cys440 and Cys449, and between Cys456 and Cys467, respectively, thereby 

disrupting the stability of the adjacent Ca2+ coordinated by the side chains Asp469, Glu455 

and Asp452 (Figure 4). Whilst the 3-dimensional structure of the EGF35 region has not been 

experimentally resolved, it is anticipated that a similar effect would be seen with the 

Cys1374 mutation. Taken together, these observations imply that the majority of missense 

mutations have a substantial effect on the structural integrity vital to NOTCH1 activity. 

Determining the functional impact of the transmembrane domain mutation p.A1740S is 

outside the scope of this study and is therefore of unknown significance.

The 36 EGF-like repeats can be modified by the addition of an O-glucose sugar between the 

first and second conserved cysteines, and an O-fucose between the second and third 

cysteines, which is essential for normal Notch function.40 Similarly, the target motif 

C5XXGXS/TGXXC6, located between the fifth and sixth conserved cysteines has been 

shown to be recognized by EOGT in both Drosophila and mouse.41 EOGT functions as an 

O-linked N-acetylglucosamine (GlcNAc) transferase, which catalyses the addition of an O-

GlcNAc moiety.42 Although EOGT has not yet been formally demonstrated to target human 

Notch, it is notable that 4 of the 5 EGF-domain specific missense mutations identified here 

are located within this target motif, suggestive of a convergence of pathways previously 

implicated in the development of AOS (Figure 3B).

To examine the effect of identified mutations on Notch signaling, we have performed gene 

expression studies and demonstrated that NOTCH1 expression is down-regulated in AOS 

subjects harboring NOTCH1 mutation in vivo, by comparison to a single healthy control 

female, aged 26 years. While it is not uncommon to use a single control in real-time PCR 

studies, we acknowledge that these findings might have been strengthened by employing 

additional controls as part of the experimental design. The data generated are corroborated 

by transient transfection studies of mutant constructs and, together, support the prediction of 

transcript loss by nonsense-mediated decay or, in the case of missense mutations, potential 

perturbation of mRNA stability.43 This observation is underpinned by a reduction of HEY1 

and, to a lesser extent, HES1 transcript levels. Of interest, perturbation of both HEY1 and 
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HES1 expression vary between the mutations tested, indicating allele-specific effects on 

downstream signaling. These data, whilst preliminary due in part to limited patient sample 

availability, suggest that down-regulation of HEY1 is a common mechanism in AOS. HEY1 

is known to have a prominent role in cardiovascular development, with Hey1/Hey2 double-

knockout mice exhibiting defects of vasculogenesis and remodeling, particularly in the head 

region.44 Moreover, these results are compatible with the hypothesis that dysregulated 

Notch signaling caused by identified mutations is mediated via the transcription factor 

RBPJ, a known causal factor in AOS pathogenesis. Taken together, these data offer support 

for loss-of-function or haploinsufficiency of NOTCH1 as an important factor in AOS 

pathogenesis, and provide a compelling genotype-phenotype correlation between NOTCH1 

mutation and AOS subjects with cardiac anomalies, which warrants further epidemiological 

investigation. As the overall study group herein has not been intensively examined for 

cardiac complications, these latter conclusions are at present indicative and will benefit from 

existing and future international collaboration.

This report establishes NOTCH1 mutation as the primary cause of AOS, accounting for 17% 

of cases in our cohort, and an important genetic factor in AOS with associated 

cardiovascular complications. Functional studies have indicated links to related genes 

associated with this condition, which together emphasize the central importance of the 

Notch signaling cascade in a series of key developmental systems in human embryogenesis.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Clinical features of three representative AOS patients with NOTCH1 mutation. (left) Patient 

3-III:1 at age 2.8 years: residual skin defect after multiple operations on a large area of scalp 

aplasia cutis congenita; minor hypoplasia of terminal phalanges of the toes; normal fingers. 

(middle) Patient 6-II:1 as a newborn: large scalp defect involving the underlying bone; 

hypoplasia of terminal phalanges of both feet. (right) Patient 8-II:1 at age 14.7 years: small 

area of alopecia marking a healed scalp defect; hypoplasia of terminal phalanges and nails of 

the left foot; normal fingers.
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Figure 2. 
Pedigree structures and sequence chromatograms of identified NOTCH1 mutations. 

Asterisks denote the families included in the exome sequencing discovery cohort. Probands 

are marked by the black arrows and asymptomatic carriers are indicated with black dots. For 

de novo mutations, paternity was confirmed by microsatellite analysis (data not shown). 

Key: +, wild-type allele; −, mutant allele.
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Figure 3. 
Location and conservation of NOTCH1 mutations. (A) Schematic of the NOTCH1 protein 

highlighting the critical functional domains. The AOS mutations identified in this study are 

arrayed below the schematic. Truncating mutations are marked in green type and orange 

depicts missense mutations. (B) Conservation of the 6 missense mutations across species. 

Conserved residues are highlighted in orange. The 4th, 5th and 6th conserved cysteines 

within the EGF domains are boxed. Accession numbers: H. sapiens: NP_060087.3; M. 

mulatta: AFH32544.1; C. lupus familiaris: XP_005625490.1 (predicted); M. musculus: 

NP_032740.3; G. gallus: NP_001025466.1; X. tropicalis: NP_001090757.1; D. rerio: 

NP_571377.2; T. rubripes: XP_003975158.1 (predicted); D. melanogaster: NP_476859.2.
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Figure 4. 
Ball and stick representation of the 3-dimensional structure of human NOTCH1 EGF repeats 

11-13. The positions of the adjacent AOS mutations p.R448Q and p.C449R are highlighted 

by the solid red arrows. The p.C456Y mutation is similarly marked. The solid black arrows 

indicate the disulfide bonds which would be abolished by the p.C449R and p.C456Y 

mutations, respectively. The side chains of the key Ca2+ ion coordinating residues (Asp452, 

Glu455 and Asp469) and Glu424 are indicated. Water molecules have been removed for 

clarity. Figure produced from the crystal structure (PDB ID: 2VJ3)22 using the PyMOL 

Molecular Graphics System.
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Figure 5. 
Real-time PCR of NOTCH1-positive patient samples. Graphs show levels of gene 

expression for (A) NOTCH1, (B) HEY1 and (C) HES1. Relative quantification of mRNA 

transcripts are calculated relative to the WT baseline value (set at 1) and normalized to 

endogenous GAPDH and ACTB levels. Graphs represent the mean of three independent 

experiments with error bars indicating SEM. The brackets denote individuals with identical 

NOTCH1 mutations. Key: *p<0.001; †p<0.01
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Figure 6. 
Simplified schematic of the canonical Notch signaling pathway. (A) The EGF-repeat 

domain of Notch is known to be glycosylated by EOGT in mammalian cells. Activation of 

the Notch signaling cascade is initiated by the binding of one of five ligands through direct 

contact of adjacent cells. (B) Ligand activation leads to cleavage and release of NICD, 

which translocates to the nucleus to form an active transcriptional complex with RBPJ, 

mastermind (MAML) and transcriptional co-activators (CoA). (C) In the absence of Notch 
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activation, RBPJ complexes with co-repressor proteins (CoR) to repress transcription of 

downstream genes. Mutations in EOGT and RBPJ have previously been identified in AOS.
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