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Predicting the structure of fish assemblages in rivers is a very important goal in 
ecological research, both from a purely theoretical point of view and from an ap-
plied one. Moreover, it will play a relevant role in the definition of reference con-
ditions in the light of the EU Directive 2000/60/EC (i.e. the Water Framework Di-
rective). Estimates of the probability of presence/absence of fish species have been 
obtained so far using different approaches. Although conventional statistical tools 
(e.g. logistic regression) provided interesting results, the application of artificial 
neural networks (ANNs) has recently outperformed those techniques. ANNs are 
especially effective in reproducing the complex, non-linear relationships that link 
environmental variables to fish species presence and/or abundance. In this chapter 
some new developments in ANN training procedures will be presented, which are 
specifically aimed at solving ecological problems related to the way the errors are 
computed in species composition models. The resulting improvements in species 
prediction involve not only the accuracy of the models, but also their ecological 
consistency. A case history about fish assemblages in the rivers of the Veneto re-
gion (NE Italy) is presented to demonstrate how the enhanced modelling strategy 
improved the accuracy of the predictions about fish assemblages. 

Keywords: predictive modelling, fish assemblage, error back-propagation, 
multilayer perceptron, artificial neural network training. 

 

8.1 Introduction 

Fish assemblages are among the most sensitive and reliable indicators of the eco-
logical status of stream and rivers (Fausch et al., 1990). Fish assemblages are able 
to integrate over both time and space the biological response to ecological proc-
esses more effectively than other biotic components (Harris, 1995). Sampling fish 
fauna, of course, is not as simple as sampling other organisms, but in spite of this 
problem indices of biotic integrity based on fish have been developed and are now 
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widely accepted (Karr, 1981; Karr et al., 1986). Targeting fish fauna in environ-
mental monitoring activities is effective not only from the ecological point of 
view, but also in the light of the need for straightforward communication with de-
cision-makers as well as with other stakeholders. In fact, fish are probably the 
most direct and intuitive expression of aquatic ecosystem quality (McCormick et 
al., 2000). 

Therefore, it is not surprising that composition, abundance and age structure of 
fish fauna are considered as some of the main biological quality elements for the 
classification of ecological status of surface water in the EU Water Framework Di-
rective (i.e. Directive 2000/60/EC of the European Parliament and of the Council 
of 23 October 2000 establishing a framework for Community action in the field of 
water policy). 

The above-mentioned Directive also states that biological reference conditions 
have to be established for each type of water body. These reference conditions are 
based on community structure and take into account all the biological quality ele-
ments, thus including fish fauna as well as benthic macroinvertebrates and aquatic 
flora. Hence, modeling fish assemblage composition on the basis of biotic and 
abiotic environmental descriptors will play a major role in the implementation of 
the Water Framework Directive and, more in general, in the management of 
aquatic ecosystems. 

Predicting fish fauna as well as other biotic assemblages is not only relevant to 
the definition of reference conditions that are aimed at the evaluation of environ-
mental quality. In fact, it is also an important achievement in scientific research, 
e.g. as a framework for studies on species interactions, and it can be very useful 
for a number of other applied tasks. In particular, species composition models may 
support environmental management by simulating different environmental scenar-
ios and pointing out the most critical factors that need changes or regulation. Sen-
sitivity analyses of the species composition models play a relevant role in this kind 
of studies. 

Even though the idea of modeling fish fauna composition on the basis of envi-
ronmental variables is not new (e.g. Faush et al., 1988), only recently Artificial 
Neural Networks (ANNs) have been applied to this problem. ANNs have been 
used to predict fish species richness (e.g. Guegan et al., 1998) as well as density 
and biomass of single fish populations (Baran et al., 1996; Lek et al., 1996a,b; 
Mastrorillo et al., 1997) and ecological characteristics of fish assemblages (Agui-
lar Ibarra et al., 2003). As far as fish assemblages composition at river basin scale 
is considered, only a few models have been developed so far, either using conven-
tional statistical methods (e.g. Oberdorff et al., 2001) or ANNs (Boët and Fhus, 
2000; Joy and Death, this volume; Olden and Jackson, 2001). A very useful intro-
duction to the ecological applications of ANNs can be found in Lek and Guégan 
(1999). 

ANNs and other modelling techniques that have been developed and formerly 
applied in other disciplines have been often introduced into ecological applications 
with no modification. In most cases this was not a problem and very useful results 
were obtained anyway. However, in ecological modelling adaptations of the mod-
elling techniques are sometimes required in order to fit particular needs or to 
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properly exploit the available information. This is certainly the case of species 
composition models, as the data that are involved in this kind of application can-
not be regarded as mere numbers, because each species has a different ecological 
“meaning”, which in turn depends on its coenotic context. 

This chapter will present a case study about fish assemblages from some river 
basins in north-eastern Italy, showing how the above-mentioned problem can be 
tackled by developing ecologically enhanced ANNs. 

8.2 Data set 

The ANN models presented in this study are based on a data set that included 
sampling sites from several river basins in the Veneto region (north-eastern Italy), 
as shown in Fig. 3.8.1. The data set consisted of 264 records and it comprised two 
groups of variables. The first group included the variables to be predicted by the 
models, i.e. 34 fish species, whereas the second group embraced 20 predictive en-
vironmental variables, as shown in Tables 3.8.1 and 3.8.2 respectively. 
 

Venice

Adriatic
Sea

 

Figure 3.8.1 The sampling sites (black dots) were located in several river basins 
in the Veneto region (NE Italy). 

Fish has been collected by means of electrofishing gear. Either direct current or 
pulsed direct current electrofishing devices have been used in streams and small 
rivers, while these tools were supported by nets when only part of larger rivers 
was sampled. Basically, in the latter case the electrofishing area was closed by 
means of nets that also acted as a sampling device. 
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Table 3.8.1 List of the fish species in the Veneto data set. Modeled species are on 
white background, while species that were excluded (see text) are on grey 
background. Italian names are shown in parentheses for those species that do not 
have an English name. 

n Scientific name English name 

1 Salmo (trutta) trutta (Linnaeus, 1758) Sea Trout 
2 Leuciscus cephalus (Linnaeus, 1758) Chub 
3 Padogobius martensii (Günther, 1861) (Ghiozzo di fiume) 
4 Scardinius erythrophthalmus (Linnaeus, 1758) Rudd 
5 Esox lucius (Linnaeus, 1758) European Pike 
6 Rutilus erythrophthalmus (Zerunian, 1982) (Triotto) 
7 Alburnus alburnus alborella (De Filippi, 1844) Bleak 
8 Cottus gobio (Linnaeus, 1756) Bullhead 
9 Tinca tinca (Linnaeus, 1758) Tench 
10 Cobitis taenia (Linnaeus, 1758) Spined loach 
11 Phoxinus phoxinus (Linnaeus, 1758) Minnow 
12 Anguilla anguilla (Linnaeus, 1758) European Eel 
13 Knipowitschia punctatissima (Canestrini, 1864) (Panzarolo) 
14 Salmo (trutta) marmoratus (Cuvier, 1817) Marble Trout 
15 Sabanejewia larvata (DeFilippi, 1859) Italian Loach 
16 Ictalurus melas (Rafinesque, 1820) Black Bullhead 
17 Lepomis gibbosus (Linnaeus, 1758) Pumpkinseed 
18 Barbus plebejus (Bonaparte, 1839) Italian Barbel 
19 Chondrostoma genei (Bonaparte, 1839) South Europe Nase 
20 Gasterosteus aculeatus (Linnaeus, 1758) Three-spined Stickleback 
21 Carassius auratus (Linnaeus, 1758) Crucian Carp 
22 Gobio gobio (Linnaeus, 1758) Gudgeon 
23 Leuciscus souffia (Risso, 1826) Blageon 
24 Thymallus thymallus (Linnaeus, 1758) Grayling 
25 Lampetra zanandreai (Vladykov, 1955) Po Brook Lamprey 
26 Gambusia holbrooki (Girard, 1859) Eastern mosquitofish 
27 Barbus meridionalis Meriditerranean Barbel 
28 Micropterus salmoides (Lacepede, 1802) Large-Mouthed Bass 
29 Perca fluviatilis (Linnaeus, 1758) Perch 
30 Abramis brama (Linnaeus, 1758) Common Bream 
31 Cyprinus carpio (Linnaeus, 1758) Common Carp 
32 Salvelinus fontinalis M. Brook Char 
33 Oncorhynchus mykiss (Walbaum, 1792) Rainbow Trout 
34 Salmo (trutta) hybr. trutta/marmoratus Sea Trout-Marble Trout hybrid 
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Two fish taxa, namely Oncorhynchus mykiss, i.e. the rainbow trout, and Salmo 
(trutta) hybr. trutta/marmoratus, i.e. a sea trout - marble trout hybrid (on grey 
background in Table 3.8.1), were excluded from the models, as their distribution 
only partly depends on environmental variables. In fact, the distribution of the first 
taxon is linked to the artificial release of reared juveniles, while the second taxon 
one is clearly not independent of the distribution of the two parent species and is 
probably associated to problems in species identification too. 

Some of the available records refer to sampling activities that were carried out 
at the same site at two different times, thus representing the local interannual vari-
ability of both the fish fauna and the environmental variables. 

The fish fauna composition was described using binary variables, i.e. presence 
or absence of each taxon. Quantitative data, although available in most cases, were 
not considered for model development as they were not enough accurate because 
of the combined effects of varying efficiency of the electrofihing gear and mor-
phodynamic heterogeneity of the sampling sites. The environmental variables 
were coded in different ways, either as quantitative or semi-quantitative data, and 
all the non-binary variables were normalized by rescaling them in the [0,1] inter-
val. 

Table 3.8.2 Environmental descriptors used as input (i.e. predictive) variables in 
the models. 

1 elevation (m) 
2 mean depth (m) 
3 runs (surface, %) 
4 pools (surface, %) 
5 riffles (surface, %) 
6 mean width (m) 
7 boulders (surface, %) 
8 rocks and pebbles (surface, %) 
9 gravel (surface, %) 
10 sand (surface, %) 
11 silt and clay (surface, %) 
12 stream velocity (score, 0-5) 
13 vegetation covering (surface, %) 
14 shade (%) 
15 anthropogenic disturbance (score, 0-4) 
16 pH 
17 conductivity (µS cm-1) 
18 gradient (%) 
19 catchment area surface (km2) 
20 distance from source (km) 
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The whole data set was divided into three subsets for training, validating and 
testing the ANN models. The training data set included 50% of the records 
(n=132), whereas both the validation and the test data sets included 25% of the re-
cords each (n=66). Each record was assigned to a different subset after sorting all 
the records according to the elevation of the sampling sites. Starting from the 
highest elevation, the records were divided into the above-mentioned subsets by 
assigning uneven records to the training subset and by assigning each couple of 
successive even records to the validation and test subset, respectively. This way 
the records in each group of four were assigned to the (1x) training, (2x) valida-
tion, (3x) training and (4x) test data subset, with x ranging from 1 to 66. This break 
up strategy allowed a homogeneous allocation of records for different elevations 
classes among the three subsets, thus stratifying the procedure on the basis of the 
most relevant environmental variable. 

8.3 Neural network training 

The most common type of ANN, i.e. the multilayer perceptron, was used for mod-
eling the fish fauna composition. The error back-propagation algorithm (Rumel-
hart et al., 1986) was used for training the ANNs, both in its original formulation 
and in a modified version that will be described later in this chapter. Other training 
algorithms were not tested because the theoretical advantages they might provide 
(e.g. quicker training) are not really relevant for ecological applications. 

ANNs with 20 input nodes, 32 output nodes and 17 nodes in the hidden layer 
were selected after a set of empirical tests involving ANNs with different numbers 
of nodes in the hidden layer (from 10 to 40 nodes). The selected architecture was 
the one that provided the minimum overall error with respect to an independent 
test set. However, the selection of the number of nodes in the hidden layer was not 
a critical issue, as the differences among the models were negligible. Sigmoid ac-
tivation functions [i.e. f(x)=1/(1-e-x)] were used both in the hidden and in the out-
put nodes of all the ANNs that have been trained and used in this study. 

In order to prevent overtraining, i.e. to avoid that the ANN “learned by heart” 
the fish fauna composition at each known site while loosing its generalization abil-
ity, different strategies were adopted. The first strategy involved an early stopping 
of the training procedure. In other words, the training procedure was terminated as 
soon as the error, computed on the basis of the validation set only, ceased to de-
crease monotonically (obviously, the validation set records were never used as 
training patterns). The second strategy was based on the random selection of a 
subset of training patterns at each epoch during the training procedure. This way it 
was not possible for the ANN to be influenced by the order in which the training 
patterns were submitted (thus possibly memorizing them). Finally, white noise in 
the [-0.01,0.01] range was added to each input, i.e. predictive variable. Such a 
small random perturbation of the input values, also known as jittering, favored the 
generalization of an ANN model because the latter learned how to associate each 
output pattern with a set of input intervals rather than with a single input pattern 
(Györgyi 1990). 
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The accuracy of the ANN predictions was expressed by the percentage of Cor-
rectly Classified Instances (CCI), while the significance of the deviation of the 
ANN predictions from a random model was tested by means of the K statistics 
(Cohen, 1960; Fielding and Bell, 1997). Details about the computation of CCI 
percentage and K statistics are provided in the Appendix. 

8.4 Model selection 

A few different basic options are available for developing models of species dis-
tribution using ANNs. The first option is to train a different model for each spe-
cies, whereas the other is to train a single model that is able to simultaneously pre-
dict the distribution of all the species. Another option is to split the species list into 
two or more subsets on the basis, e.g. of trophic characteristics, and to train a 
model for each subset. In the latter case, however, the number of possible models 
is very high and selecting the best combination is not a straightforward task. 

If only the first two options are considered, the selection of the best approach 
may be based on empirical tests, but there are also some theoretical consideration 
that should be taken into account. 

In fact, when modeling the distribution of a complex set of species, as a fish as-
semblage, an ANN model that predicts more than a single species is able to learn 
not only the distribution of each species, but also some information about interac-
tions among species. Of course, ecologists know that this kind of information is 
relevant, but in many cases their theoretical knowledge about species interactions 
is not adequate, as it is often based on hypotheses, personal observations, etc. 
Therefore, it is not easy to exploit such knowledge in modeling applications using 
conventional statistical methods (e.g. logistic regression). Since ANNs are able to 
learn from data, they are also able to learn by themselves what is relevant in spe-
cies interactions and this may enhance their predictive ability. 

Given a species assemblage containing s species, 2s different combinations of 
species presence and absence data exist. In the case of our data set, 
232=4294967296 different patterns are theoretically possible, but only 131 differ-
ent patterns were actually found in 264 observations. This is clear evidence for the 
non-independence of different species responses to environmental factors and for 
the role that biotic interactions play. 

Even though simultaneously modeling all the species in a community or in an 
assemblage is theoretically more efficient, there are practical constraints that may 
hinder this approach. In fact, the complexity of the ANN structure grows very rap-
idly with the number of species to be modeled, and the need for training data 
grows proportionally. Moreover, the set of predictive environmental variables 
used by the model might be more relevant to some species then to others, and this 
would impair the model response. In the case of fish assemblages, however, the 
overall number of species is usually not too large and the species response to envi-
ronmental variables is rather homogeneous. Therefore, a single model approach 
was selected in our study. 
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8.5 A conventional training procedure 

The first attempt at modeling the fish assemblage was based on a very conven-
tional ANN approach, as a 20-17-32 multilayer perceptron was trained using an 
ordinary error back-propagation algorithm. This ANN was able to predict the 
presence of all the species on the basis of environmental variables. The output 
values it returned ranged in the [0,1] interval and therefore they could be regarded 
as the probability for each species of being observed. The predicted fish assem-
blage composition was then obtained by setting a 0.5 threshold for each output, 
thus converting the continuous output values into binary values (i.e. species pres-
ence or absence estimates) by means of a process that is closely related to defuz-
zyfication. 

The overall accuracy of the ANN model was very good, as the CCI ranged 
from 98.5% to 79.1% (Fig. 3.8.2), while the average percentage of CCI was 
91.6%. 
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Figure 3.8.2 Percentages of Correctly Classified Instances (CCI) for the 32 mod-
eled species. Species are sorted in descending CCI order. 
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The percentage of CCI, although very convenient and easy to compute, is 
sometimes a misleading criterion for evaluating the ability of a model to predict 
species composition. In fact, it would be really appropriate in case the number of 
presence records for a given species is exactly the same as the number of absence 
records, and it would still be acceptable in case the ratio between presence and ab-
sence records is not too far from one. On the contrary, when the ratio becomes too 
small (or too large), an ANN model can be easily affected by a significant bias. 
For instance, when very rare species are modeled, an ANN that always returns 
null outputs can easily provide a very high CCI percentage. In other words, if a 
species were present in 2 out of 100 records (i.e. if its frequency were 2%), an 
ANN would be very easily able to provide 98% of CCI by constantly predicting 
the absence of that species. Needless to say, notwithstanding a very high CCI per-
centage, such an ANN could not be considered as a true model. 

Therefore, another procedure was selected for evaluating the accuracy of the 
ANN model in the light of the actual frequency of presence or absence record for 
each species. In particular, the K statistics (Cohen, 1960; Fielding and Bell, 1997) 
was applied in order to test whether the predictions for each species were signifi-
cantly different from those of a random model or not. The ANN model was able to 
effectively predict 20 species out of 32, i.e. in 20 cases the K statistics was signifi-
cantly different from zero (p=0.95), whereas it failed in the remaining cases (table 
3.8.3). 

It was evident, however, that the ability of the ANN to predict species presence 
and absence was strictly related to species frequency. In fact, the maximum fre-
quency among the 12 species with non-significant K statistics was 8.71%, and 10 
of them had frequencies lower than 5%. Thus, the model failed in predicting sev-
eral rare species, while it was quite accurate in predicting more frequent species 
(Fig. 3.8.3). 
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 p(K=0)<0.05
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Figure 3.8.3 Conventional ANN model: K statistics vs. species frequency. The 
model is not reliable as far as rare species are concerned, whereas it works much 
better with more frequent species. 
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Table 3.8.3 Conventional ANN model: observed and predicted frequency by spe-
cies (sorted in descending order of observed frequency) and K statistics (signifi-
cant values are marked with asterisks). 

 observed 
frequency 

predicted 
frequency K 

Salmo (trutta) trutta 76.5% 83.3% 0.719 * 
Leuciscus cephalus 28.0% 31.1% 0.727 * 
Padogobius martensii 26.1% 36.4% 0.660 * 
Scardinius erythrophthalmus 25.0% 28.0% 0.806 * 
Esox lucius 24.6% 31.1% 0.709 * 
Rutilus erythrophthalmus 24.6% 26.9% 0.723 * 
Alburnus alburnus alborella 21.2% 25.8% 0.748 * 
Cottus gobio 20.8% 19.3% 0.528 * 
Tinca tinca 20.1% 25.0% 0.816 * 
Cobitis taenia 17.8% 15.5% 0.619 * 
Phoxinus phoxinus 17.8% 11.4% 0.442 * 
Anguilla anguilla 17.4% 12.9% 0.560 * 
Knipowitschia punctatissima 17.0% 12.1% 0.440 * 
Salmo (trutta) marmoratus 10.2% 9.8% 0.853 * 
Sabanejewia larvata 9.8% 11.0% 0.696 * 
Ictalurus melas 9.5% 12.5% 0.807 * 
Lepomis gibbosus 8.7% 0.8% 0.148 n.s. 
Barbus plebejus 7.2% 2.7% 0.280 * 
Chondrostoma genei 6.8% 5.7% 0.709 * 
Gasterosteus aculeatus 6.8% 6.4% 0.419 * 
Carassius auratus 6.4% 0.0% 0.000 n.s. 
Gobio gobio 6.4% 7.2% 0.583 * 
Leuciscus souffia 4.9% 0.0% 0.000 n.s. 
Thymallus thymallus 4.9% 0.4% 0.137 n.s. 
Lampetra zanandreai 3.8% 0.0% 0.000 n.s. 
Gambusia holbrooki 3.4% 0.0% 0.000 n.s. 
Barbus meridionalis 3.0% 0.8% 0.190 n.s. 
Micropterus salmoides 3.0% 0.0% 0.000 n.s. 
Perca fluviatilis 1.1% 0.0% 0.000 n.s. 
Abramis brama 0.8% 0.0% 0.000 n.s. 
Cyprinus carpio 0.8% 0.0% 0.000 n.s. 
Salvelinus fontinalis 0.8% 0.0% 0.000 n.s. 
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This result, of course, was not surprising. An ANN learns from examples, and it 
is obvious that it cannot learn how to correctly predict the presence of a species if 
the latter is only present in a few records. In these cases an ANN, as well as any 
other model, cannot associate the species response to patterns in the variation of 
predictive variables. Obviously, exactly the same problem would occur if a model 
were trying to predict an almost ubiquitous species.  

The lack of information about the distribution of rare species is usually related 
to the way data are collected. In many cases the sampling effort is evenly distrib-
uted over the studied region (e.g. a river basin), because the main purpose of the 
sampling is the characterization of the fish assemblage composition. Therefore, 
stenotopic species are only found in a limited number of samples and not enough 
data are available about their relationships with environmental variables. A similar 
problem would also arise for really ubiquitous species, although in practice it is 
not common that a species is present in almost all the records in a data set. More-
over, density and population structure data usually provide useful hints about the 
environmental gradients that play a role in defining the distribution of ubiquitous 
species. As far as assemblage composition modeling is concerned, however, the 
practical effects of the lack of information about the relationships between envi-
ronmental variables and species absence are exactly the same as those of the lack 
of information about the relationships between environmental variables and spe-
cies presence. 

8.6 Problems in the error computation 

Even though no modeling technique can actually fill the gaps in the available in-
formation, it is certainly possible to improve a model by exploiting that informa-
tion in a more effective way.  

A conventional ANN training procedure is driven by the minimization of the 
Mean Square Error (MSE). As soon as the MSE becomes smaller than a previ-
ously defined value, the training procedure is stopped, assuming that the agree-
ment between ANN output values and target (i.e. known) values is good enough. 
The early stopping procedure that was used in this study involves a similar role of 
the MSE, although the latter is minimized with respect to a validation data set that 
is independent of the training data set. In particular, the MSE is computed by 
comparing the continuous ANN outputs with the binary target values. 

This approach makes perfectly sense when continuous quantitative variables 
are involved (e.g. biomass, concentration, etc.), but it is not adequate when species 
composition is taken into account. There are at least three reasons for this inade-
quacy and they are probably not as obvious at they should be. 

Firstly, when a threshold function is applied for discretizing the ANN outputs, 
the real contribution of each single error to the MSE strongly depends on the out-
put value. For instance, if the target value for a given species is 0 (i.e. absence), a 
0.495 output value would contribute (0.495-0)2=0.245025 to the overall MSE, al-
though it would result in a perfect agreement when the output value is transformed 
into a binary value by passing it to the threshold function (0.495<0.5 would be 
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transformed into 0, i.,e. absence). A very similar output value, like, for instance, 
0.505, would provide an almost identical contribution to the overall MSE 
(0.505-0)2=0.255025, but it would be in disagreement with the target value after 
applying the threshold function (0.505>0.5 would be transformed into 1, i.,e. pres-
ence). 

Secondly, the potential contribution of each modeled species to the MSE is 
identical and it varies between 0 and 1. Although this makes perfectly sense from 
a computational point of view, it fails to capture the real effect of different errors 
in different contexts, because it does not weight each error according to its impact 
on the characterization of the species assemblage structure. In fact, a wrong pre-
diction about a single species might have a limited effect on the overall composi-
tion of the predicted assemblage if the latter included many other species, while it 
might completely change the assemblage structure if the latter included only a few 
species. In other words, each species has an ecological “meaning” that depends 
not only on its ecological characteristics, but also on the way the species combines 
with other species, i.e. on the assemblage structure. 

Finally, the efficiency of the sampling is usually not homogenous, even within 
a single study. For instance, it is much more likely that a species, although present 
at a given site, escapes from sampling devices in a large river than in a small 
stream. Therefore, the contributions of different species to the error computation 
should not be simply added to each other, as in the case of MSE. 

In conclusion, species presence and absence data are not to be used as mere 
numbers (i.e. as 0s and 1s) in the error computations that are needed for optimiz-
ing species composition models. As a consequence, the MSE is not an appropriate 
measure of the error in such models. 

8.7 An enhanced training procedure 

Several options exist for implementing an ecologically sound procedure for error 
computation, although not all the problems that were mentioned in the previous 
section can be solved. Since it is clear that the role of each species depends on 
other species, i.e. on species assemblage structure, a binary similarity coefficient 
may provide a simple yet effective way to measure the difference between the 
model outputs (predicted assemblage) and the target values (observed assem-
blage). 

This solution leads to a different problem, i.e. the selection of the most appro-
priate similarity coefficient. However, this is a common problem in ecological 
multivariate data analysis and most ecologists are acquainted with it and are cer-
tainly able to select a suitable coefficient. In our case study, we were able to as-
sume that the fish assemblage composition was recorded very accurately at every 
sampling site. This implied that species absence in samples might be regarded as 
reliable information. Therefore, a symmetrical similarity coefficient that slightly 
emphasized differences in species composition was selected as a measure for 
model errors. In particular, the Rogers and Tanimoto (1960) similarity coefficient 
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(Sjk) was chosen and transformed into a dissimilarity coefficient (Djk), which was 
monotonically related to the error in the species composition prediction: 

 

jkjkjk SD
dcba

daS −=
+++

+
= 1          

22
 

 
In the above formula a and d are the number of species whose presence (a) or 

absence (d) are correctly predicted, whereas b and c are the number of present 
species that are not predicted by the model and viceversa. 

The conventional ANN training procedure was then modified in order to use 
the mean dissimilarity between model outputs and validation patterns (i.e. sam-
ples) as the criterion for controlling the ANN learning. In particular, the training 
procedure was halted as soon as the mean dissimilarity began to increase. This al-
lowed an optimal generalization of the ANN learning, which only takes place dur-
ing the first part of the training procedure, i.e. while the error (the dissimilarity, in 
this case) is monotonically decreasing (Fig. 3.8.4). 
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Figure 3.8.4 The training procedure for the enhanced ANN model. The modified 
steps are shown on grey background. 

The results of this enhanced training procedure were almost identical to those 
of the conventional procedure in terms of CCI percentages, but they showed a 
substantial improvement when other criteria were taken into account. In fact, 
while the average value for the CCI was 91.8%, i.e. only 0.2% higher than the one 
obtained by conventional training, the differences between predicted and observed 
species frequencies, as computed on the basis of the whole test set, were substan-
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tially smaller than in the case of conventional training (2.2% and 3.5% in absolute 
value, respectively). 

However, the most important advantage of the modified training procedure 
over the conventional one was in its ability to obtain better predictions for those 
species whose frequency was smaller than 10% (Table 3.8.4, but see also Table 
3.8.3). 

Moreover, the only species whose presence was never predicted by the model 
were the two rarest species, namely Cyprinus carpio and Salvelinus fintinalis, 
while the conventionally trained model was not able to predict the prsence of 9 
species out of 32.  

Finally, the K statistics was on the average much higher than in the case of the 
conventionally trained model (0.59 and 0.42, respectively), and only 5 out of the 7 
less frequent species were associated to K values that were not significantly dif-
ferent from zero. This implied that the enhanced model was not able to predict 
only 5 species, while the conventionally trained model failed with 12 species. 

In order to summarize the differences between the conventional (MSE-based) 
ANN model and the enhanced (dissimilarity-based) one, it is useful to compare 
the K statistics species by species, as shown in Fig. 3.8.5. The small boxes show 
the K values for the conventional model (solid boxes) and for the enhanced one 
(white boxes), while the whisker on the left of each box indicates the lower end of 
the confidence interval of the K statistics (the upper one is not relevant in this 
case, so it was omitted). Obviously, the K statistics is not significantly different 
from zero (at a probability level p=0.95) if the left whisker intersects the vertical 
axis at K=0. The boxes on the vertical axis with no whisker on the left show those 
cases in which the K statistics was not computed because the model always pre-
dicted the absence of the corresponding species. The species have been sorted ac-
cording to their frequency, shown in parentheses on the right of each species 
name. 

It is very easy to notice that there were no cases in which the conventional 
training provided higher K values than the enhanced model, but the most striking 
difference between the two models can be observed for the less frequent species. 
In fact, the enhanced model allowed obtaining dramatic improvements in the pre-
dictive ability of the model and in several cases the K statistics for the enhanced 
model was significant, while it was not significant or not even computable for the 
conventional model. 

In the case of the enhanced model only five species were associated with values 
of the K statistics that were not significant, while twelve species were in that situa-
tion when the conventional model was used. It is interesting to notice that the 
largest changes in K values were observed for species whose frequency ranged 
from 3% to 9%. These species, that cannot be considered as truly rare species, are 
certainly associated with particular physical, chemical and biotical conditions and 
play a relevant role in defining the ecological characteristics of the fish assem-
blage. 
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Table 3.8.4 Enhanced ANN model: observed and predicted frequency by species 
(sorted in descending order of observed frequency) and K statistics (significant 
values are marked with an asterisk). 

 observed 
frequency 

predicted 
frequency K 

Salmo (trutta) trutta 76.5% 74.6% 0.726 * 
Leuciscus cephalus 28.0% 24.6% 0.805 * 
Padogobius martensii 26.1% 22.0% 0.767 * 
Scardinius erythrophthalmus 25.0% 23.5% 0.836 * 
Esox lucius 24.6% 21.2% 0.754 * 
Rutilus erythrophthalmus 24.6% 21.6% 0.765 * 
Alburnus alburnus alborella 21.2% 19.7% 0.790 * 
Cottus gobio 20.8% 12.5% 0.640 * 
Tinca tinca 20.1% 17.4% 0.824 * 
Cobitis taenia 17.8% 15.2% 0.675 * 
Phoxinus phoxinus 17.8% 14.0% 0.615 * 
Anguilla anguilla 17.4% 13.3% 0.721 * 
Knipowitschia punctatissima 17.0% 13.6% 0.665 * 
Salmo (trutta) marmoratus 10.2% 9.1% 0.876 * 
Sabanejewia larvata 9.8% 8.3% 0.794 * 
Ictalurus melas 9.5% 8.3% 0.829 * 
Lepomis gibbosus 8.7% 2.3% 0.375 * 
Barbus plebejus 7.2% 4.5% 0.603 * 
Chondrostoma genei 6.8% 4.5% 0.709 * 
Gasterosteus aculeatus 6.8% 3.8% 0.601 * 
Carassius auratus 6.4% 1.9% 0.415 * 
Gobio gobio 6.4% 4.5% 0.603 * 
Leuciscus souffia 4.9% 2.3% 0.476 * 
Thymallus thymallus 4.9% 1.5% 0.458 * 
Lampetra zanandreai 3.8% 1.5% 0.485 * 
Gambusia holbrooki 3.4% 0.4% 0.195 n.s. 
Barbus meridionalis 3.0% 1.5% 0.560 * 
Micropterus salmoides 3.0% 1.1% 0.490 * 
Perca fluviatilis 1.1% 0.4% 0.497 n.s. 
Abramis brama 0.8% 0.4% 0.394 n.s. 
Cyprinus carpio 0.8% 0.0% 0.000 n.s. 
Salvelinus fontinalis 0.8% 0.0% 0.000 n.s. 
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Figure 3.8.5 A comparison of K statistics values for the conventional model, us-
ing Mean Square Error as the error criterion (black squares), and the enhanced 
model, using Rogers and Tanimoto (1960) dissimilarity instead (white squares). 
The line on the left of each square shows the lower limit of the confidence interval 
of the K statistics. Therefore, when the line (or the symbol) intersects the vertical 
axis at K=0 the K statistics is not significantly different from zero (p=0.95). 

8.8 Conclusions 

Predicting the species composition of fish assemblages on the basis of environ-
mental descriptors is a feasible task that can be carried out either by means of 
conventional probabilistic models (e.g. Oberdorff et al., 2001) or by means of 
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ANNs (e.g. Aguilar Ibarra et al., 2003; Joy and Death, this volume; Olden and 
Jackson, 2001). In particular, ANNs have been successfully used in these applica-
tions, as they allow exploiting heterogeneous sources of information in a very ef-
fective way (Scardi and Harding, 1999). Moreover, ANNs may be easily enhanced 
and adapted to specific modeling tasks (Scardi, 2001), as they are entirely empiri-
cal tools. 

Even though ANN are the most effective tools for modeling species composi-
tion (Olden and Jackson, 2002), they cannot solve the problems that are related to 
the lack of relevant information. In fact, in many cases the only predictive vari-
ables that are easily available for the modeler are those that can be obtained from 
cartographic records or direct observation. Other sources of information that in-
volve sampling and laboratory analyses are usually less abundant and therefore 
play a secondary role. Moreover, species distribution data are also scarce, and dis-
tributed in space according to the local resources for monitoring activities rather 
than on the basis of a suitable and consistent sampling design.Therefore, predict-
ing the species assemblage composition is not feasible without compromises. For 
instance, accurate ANN models can be trained at a regional scale, or focusing on 
species assemblages simpler than communities. Our application, dealing with fish 
assemblages in northeastern Italian streams and rivers, belongs to this category 
and is certainly an example of successful modeling that can be used in practical 
applications. For instance, our model can be considered as a generator of expected 
fish assemblages, i.e. of biotic reference conditions in the light of the EU Water 
Framework Directive. 

In particular, our model predicts the assemblage structure on the basis of envi-
ronmental descriptors that are mainly (but not exclusively) focused on the geo-
morphological characteristics and is based on data about the real assemblages, as 
observed in a number of real sites. Therefore, the predicted assemblage is not just 
the one that is supposed to be present at a theoretical pristine site, but a compro-
mise that represents the more likely biotic response given a number of existing 
constraints, mainly related to the long term anthropogenic impacts on pristine eco-
systems (e.g. changes in land usage, introduction of exotic species, modification 
of river banks, etc.). In regions where pristine conditions do not exist since several 
centuries, this is probably the only meaningful way to define reference conditions. 

The ANN models we presented are not only an achievement in applied ecologi-
cal research, as they also point out more general problems in species distribution 
modeling and provide solutions for them. 

The most general scientific issue that emerged from our work is that very rare 
and very frequent species cannot be effectively modeled unless enough informa-
tion is available. This obviously does not happen in many real studies, in which 
the only acceptable solution should be based on several species-specific sampling 
designs, i.e. on multiple sampling designs tailored to fit the distribution of each 
studied species. 

Another relevant scientific issue that was highlighted by our work was the need 
for adequate error measurements in ecological applications. In fact, conventional 
criteria like MSE may fail when applied to data that are not strictly quantitative, 
like species presence and absence data. These data are binary from a formal point 
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of view, but they cannot be treated just as sequences of 1s and 0s. Each species 
contributes to the assemblage structure in a way that depends simultaneously on 
its ecological characteristics and on the composition of the assemblage. Therefore, 
some errors in predicting species composition might be more relevant than others. 
For instance, in many upstream sites the only fish species is Salmo trutta trutta, 
which is also very frequent as a member of much more complex assemblages in 
other sites downstream. It is obvious that not predicting its presence in an up-
stream site would be a much more severe error than not predicting its presence 
elsewhere. 

Using a binary dissimilarity coefficient instead of MSE as the criterion for 
measuring prediction errors allowed obtaining a significant enhancement of a con-
ventional ANN model. Even though the functioning of the error back-propagation 
algorithm was not changed, the modified training procedure relied on the minimi-
zation of the mean dissimilarity as a criterion for stopping the learning phase, thus 
allowing optimal generalization of the model. In other words, the enhanced train-
ing procedure did not change the way the ANN model learned, but it changed the 
conditions for stopping its optimization. 

In our application the Rogers and Tanimoto (1960) dissimilarity was used, be-
cause we were confident about the reliability of our absence data and because we 
wanted to stress differences rather than resemblances between assemblages. In dif-
ferent situations, however, other coefficients would prove more adequate. For in-
stance, if absence data are not completely reliable (e.g. because of net avoidance) 
an asymmetric dissimilarity that only takes into account presence data, like the 
one based on the Jaccard’s coefficient (Jaccard, 1900, 1901, 1908), could be more 
appropriate. 

The enhanced training procedure not only improved the overall accuracy of the 
predictions about species composition, but it also significantly increased the abil-
ity of the model to correctly predict rare species, thus mitigating the effects of the 
unbalanced availability of information about rare species that was previously men-
tioned. 

In order to obtain further improvements of species composition models, how-
ever, changes in the modeling strategies should be coupled with the optimization 
of the sampling strategies. In fact, modeling rare or ubiquitous species is only fea-
sible if adequate information is available, as the ratio between the number of ab-
sence and presence records in training and validation data set should be as close to 
one as possible, while the variability of the environmental descriptors within each 
subset, i.e. within the presence or absence subsets, should be maximum. There-
fore, ad hoc sampling designs that significantly deviate from the usual monitoring 
approaches are needed. This shortcoming is not specific to ANNs, as it obviously 
affects any modelling technique. 

The enhanced ANN model presented in this chapter was incorporated into the 
software tool that was published as one of the deliverables of the PAEQANN pro-
ject and that can be found in the CD attached to this book. Therefore, the readers 
will be able to experiment the model on their own, to check its results and com-
pare the predictions it provides with those of other models. 
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8.9 Appendix 

Both the percentage of Correctly Classified Instances (CCI) and the K statistics 
(Cohen, 1960; Fielding and Bell, 1997) are based on the confusion matrix, i.e. on 
a 2 x 2 contingency table in which predicted presence and absence of a taxon are 
compared with their observed counterpart. In particular, if each case is expressed 
as a proportion pij, then the confusion matrix will be 

 
  Predicted 
  1 0 

1 p11 p12 
Observed 

0 p21 p22 

 
and the sum of its elements will be 1. The CCI percentage will then be computed 
as 
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The K statistic can be easily computed from the same confusion matrix. The 
observed (Po) and expected (Pe) proportion of agreement between observed and 
predicted data are the basis for the K statistics computation: 
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In particular, Po is closely related to CCI%, whereas Pe depends on the number of 
cases in all the elements of the confusion matrix: 
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In order to test the significance of the deviation from zero of the K statistics, the 
standard error sK0 has to be computed, because the ratio between K and sK0 is dis-
tributed as the standardized normal variate Z. The standard error sK0 can be ob-
tained as  
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where n is the number of cases considered in the confusion matrix and C can be 
obtained as 
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 It is very important, however, to remember that the standard error sK0 is not ex-
actly the same as the one that is needed, for instance, to compute the two-sided 
confidence interval for K.  
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